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Abstract

While Java has become a de facto standard for mobile code and distributed

programming, it is still a rigid and closed execution environment. Not only does

this lack of flexibility severely limit the deployment of innovations, but it imposes

artificial constraints to application developers. Therefore, many extensions to the

JVM have been proposed, each of them dealing with specific limitations, such as

emerging devices (mobile phones, smart cards), or constraints (real-time, fault

tolerance). It leads to a proliferation of ad hoc solutions requiring the design

of new virtual machines. Furthermore, those solutions are still rigid, closed and

poorly interoperable.

In response to this problem, we propose a flexible Java execution environ-

ment, called the JnJVM, that can be dynamically adapted to applications’ needs

as well as to available resources.

keywords: Interoperability, Flexibility, Virtual Machines.
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1. Introduction

Virtual machines have become a widely-adopted solution — from smart objects to ac-

tive routers — to handle emerging application domains, particularly mobility. A good

illustration of this phenomenon is the emergence of Java as a de facto standard for mo-

bile and distributed computing: it is used for embedded mobile applications in smart

cards, for service and protocol deployment in Active Networks, for code mobility in

Multi-Agent systems and as a general purpose programming language in Web applica-

tions.

The rapid growth of emerging application-domains has led to a proliferation of new

dedicated execution environments. Indeed, as limitations of existing environments are

identified, ad hoc solutions are proposed, to solve particular problems or limitations.

Those solutions are thus as rigid and closed as the original environment they are based

on. Most of the research projects focusing on solving a limitation in Java end up with a

modified version of a standard Java Virtual Machine (JVM). For example, to support

new devices, such as mobile phones with J2ME [21] and smart cards with JavaCard [7],

or to introduce reflection, like MetaXa [24], objects persistence, as in PJama [1] or

compilation optimizations, like Marmot [14], it was necessary to develop a new Java

runtime, because the original was not flexible enough to be dynamically adapted. What

about a Java runtime offering object persistence and compilation optimizations? It has

to be another dedicated Java runtime.

Not only does this lack of flexibility limit the development and propagation of in-

novations, but it also imposes constraints on developers, by exposing rigid and frozen

high-level abstractions. Thus, developers have to deal with the adaptation of their

project to the semantics of their execution environment rather than focusing on the
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computation problem they are trying to solve.

Even though software adaptation is a very active research area, most projects have

focused on either system aspects (mainly resources management) or language aspects

(through reification or partial evaluation) but without trying to merge them, in order

to provide a fully dynamically-adaptable execution environment.

As stated in [19], the thin line between language and system is getting thinner and

fuzzier. Based on the same observation, we have developed a systematic approach for

software adaptation, based on a language and hardware independent platform called the

Virtual Virtual Machine (VVM) [28]. In the context of the VVM project, we propose

the JnJVM: a flexible Java runtime for smart devices that can be dynamically adapted

to match applications’ needs and available resources.

The remainder of this paper starts by presenting related work on flexible virtual ma-

chines and embedded execution environments in Section 2. Section 3 briefly presents

the VVM architecture and its main components followed by its application to the con-

struction of a dynamically adaptable Java runtime, described in Section 4. Section 5

illustrates the benefits of dynamic flexibility with some examples and some performance

measurements. Finally, conclusions and perspectives are presented in Section 6.

2. Related work

In response to emerging application domains, many projects have focused on the evo-

lution of existing environments to match new semantics, architectures and constraints,

such as J2ME [21], JavaCard [7], JPS [6], RT-Java [5] and [27]. However, as stated

before, the resulting environments remain as rigid as those from which they are derived.

Research in flexible operating systems has focused on extensibility of resource man-
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agement components. Systems such as SPIN [2] or VINO [34] offer loading extensions

directly into the kernel and therefore have to deal with security and consistency issues.

Those issues are addressed with rigid and static policies, thus limiting the overall flexi-

bility. On the other hand, Exokernels [11] push extensions into the application-level,

through libraries implementing traditional abstractions and services. Hence misbe-

having extensions only affect the associated application. Although not limited, this

flexibility is static: once an application has been launched with its extensions, nothing

can be reconfigured. Furthermore, flexible operating systems do not consider language

aspects and still try to enforce a “red line” between languages and system.

XVM [18] proposes a component-based extensible virtual machine that uses a ded-

icated language to describe a virtual machine’s internals. Applications provide their

extensions and the underlying virtual machine uses call-backs to replace an internal

policy, such as garbage collector, by an application’s extension. Although the virtual

machine is extensible, its lack of reflexivity limits the flexibility to a predefined set of

aspects.

Vanilla [10] uses a DSL-based1 approach for the construction of dedicated virtual

machines. Elements such as parsers, type checkers and interpreters are described using

a dedicated language. A Language Definition File identifies the components that need

to be combined to obtain the desired virtual machine. While being well adapted to the

construction of dedicated/specialized virtual machines — like approaches to build Java

environment for embedded system used in JITS [32] or JEPES [33] — it remains a static

approach and the resulting environments are rigid and closed, thus lacking flexibility.

Harissa [26] is a another DSL-based project. Its goal is Java program specializa-

tion through program transformation and especially partial evaluation, hence it focuses

1Domain Specific Language.
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on the adaptation of an application to a specific context of utilization rather than on

the definition of a flexible execution environment. A dedicated language is used to

define specializations of “generic” classes and specialization parameters, which can be

static (evaluated at compile-time) or dynamic (evaluated at run-time). The result is

an equivalent specialized c-program that can be compiled with gcc. This approach is

obviously orthogonal and may be applied to the construction a specialized execution

environment, matching some given application domain semantics.

Embedded operating systems, such as PalmOS [29] or WindowsCE [25] are as

rigid as their “traditional” counterparts. eCos [8] is structured as a set of independent

components, so that it can be configured with specific memory allocators or scheduler,

but its flexibility is still static and limited by the system/language separation.

Camille operating system [9] relies on the Exokernel [11] approach to obtain

extensibility, without compromising security. It provides four basic characteristics for

applications: security, extensibility, interoperability, and portability. Embedded code

is expressed using a dedicated intermediate language called FAÇADE, which provides

security ensured by a code-safety checking (based on PCC-like algorithm) and exten-

sibility through a simple representation of the hardware. Due to the fact that the

usual downside of extensibility is performance, it uses Just-in-Time (JIT) techniques

to compile intermediate code into native code. From the architecture standpoint, its

minimalist approach coupled with a JIT is comparable to the principles of our VVM.

3. The Virtual Virtual Machine Approach

Instead of developing a new dedicated virtual machine for each new application domain,

the VVM approach defines a “virtualized” virtual machine that can be dynamically
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extended and specialized by loading active specifications called VMlets. A VMLet

specifies an environment by defining its abstractions and functional code. A VMLet is

said to be active because it is a program executed by a minimal environment (i.e., the

Micro-VM and not only a description of the environment).

Using a single generic/meta virtual machine (the VVM) allows a factorization of

several low-level mechanisms2 found in practically all virtual machines. This factor-

ization results in a more efficient management of resources: (i) less memory is used,

thanks to the elimination of many redundant components; (ii) resources are managed

by a unique environment being shared between several VMLet in a more efficient way.

As illustrated in Figure 1, a VVM relies on a minimal execution environment, called

the Micro-VM 3, that is extended and specialized by VMLets.
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Figure 1: General Architecture

The Micro-VM is dedicated to the construction of the execution environment .

It is structured as a set of interfaces and components based on the ODP Reference

Model [20]. The Micro-VM is both a minimal virtual machine (since it can execute

abstract instructions) and a dynamic compiler. It offers full flexibility because of two

2such as virtual processor or garbage collector.
3For a more detailed description of the Micro-VM, also called YNVM, see [31].
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properties: (i) the Micro-VM is entirely open and reflexive, thus anything (from its

internals to application code) can be adapted; (ii) the dynamic compilation inherent in

the Micro-VM allows “on-the-fly” reconfiguration.

This minimal execution environment is then extended or specialized according to a

given application domain (as with a DSL-based approach). This adaptation consists in

loading a VMLet, which describes a dedicated execution environment. This specifica-

tion directly extends the Micro-VM with new dedicated primitives, operators, abstrac-

tions for resource management, or language support for dynamic compilation. While

remaining a generic virtual machine dedicated to execution environment construction,

the Micro-VM however becomes a native, domain-specific execution environment as

well, offering the same semantics and performance as any other native, hand-coded,

domain-specific execution environment.

Applications executed by the Micro-VM are called active applications. They are

composed of two distinct parts: the application code (for example, a Java class file) and

an active script executed by the Micro-VM. The active script is responsible for loading

the appropriate VMlet and for adapting it to the application’s needs. For example, an

application based on a JVM with persistent objects is composed of a Java program (the

application) and a script that loads a Java VMlet and adapts it with the extensions

related to objects’ storage.

The Micro-VM runs on top of several host systems, such as Linux, Windows

or Mac OS. It also runs as an “embedded” environment on bare hardware4 using the

THINK [35, 13] exokernel. Such a stand-alone Micro-VM bootstrap has a 120 Ko

memory footprint, including a reification of hardware resources, network, keyboard

and framebuffer drivers, a complete Micro-VM (dynamic compiler (JIT), garbage

4currently PowerPC processors.
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collector,. . . ) and a basic TFTP-like5 protocol for incremental module loading from the

network.

4. The JnJVM: a Java VMlet

The main goal of this VMlet is to define a standard implementation of Sun’s speci-

fications [23], while preserving a high degree of dynamic flexibility. The JnJVM is

structured as a set of components, such as a JIT compiler based on the underlying

Micro-VM dynamic compiler, a memory manager with garbage collection, a linker

and an exception manager. Component interfaces are just a table of functions. Hence,

adapting a functionality in a component is done by modifying the associated entry in

the interface. An application can replace any component of the JnJVM by an arbi-

trary component. Thus, the JnJVM can define a wide range of Java runtimes, from

a very minimal one to a complete implementation of Sun’s specification, according to

available resources on the target device. Moreover, additional components can be dy-

namically integrated, when (and only when) needed. The main limit of our approach is

the Garbage Collector (GC): every component on the JnJVM is defined as collectable

object. Changing the GC implies recompiling the JnJVM.

The JnJVM has been written using the Micro-VM’s front-end language, which

means the Java virtual machine is an application in the Micro-VM environment. The

Micro-VM’s dynamic compiler is used to introduce code and execute it. Moreover,

since JnJVM’s internal components are based on a simple yet flexible model6, func-

tion pointers are re-bound on-the-fly to dynamically compiled code. Those two basic

5TFTP stands for Trivial File Transfer Protocol.
6The JnJVM uses the RM-ODP based component model of the underlying Micro-VM.
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mechanisms (dynamic compilation and adaptable components) allow any application to

tailor the JnJVM to its needs. As a result, our architecture can be considered aspect-

oriented [22]: applications dynamically weave aspects in the underlying Java virtual

machine in order to adapt the execution environment to their needs. An application,

from the JnJVM perspective, is split in two distincts parts: (i) a functional part, writ-

ten in Java and (ii) a non-functional part (i.e., aspects), written using the JnJVM

language, that describes a Java virtual machine.

Our approach is completely dynamic: a Java virtual machine is build and adapted

on-the-fly according to applications’ needs. Thus architecture differs from JITS [32],

which allows to build a priori a minimal Java virtual machine dedicated to an embed-

ded application.

4.1 A dedicated language

In order to build the JnJVM, we exploited the Micro-VM’s flexibility to extend

it with new primitives, such as (def-opcode name number explore compile) which

is used to define compilation functions associated with specific opcodes. Those new

primitives hide the complexity of some operations not only from the VMlet, but from

the applications too, which can in turn reuse work done at the VMlet level. This

extension to the Micro-VM’s font-end language is a DSL dedicated to the construction

and adaptation of Java virtual machines, hence it encapsulates the semantics (and

complexity) of this application-domain.
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4.2 Interoperability

A major goal of the VVM architecture is to provide a common language substrate

upon which interoperability at both application and execution environment levels can

be achieved. Interoperability between execution environments means that an appli-

cation Ax using a VMlet X can call functions from an Ay application using a VM-

let Y . This can be far from trivial. The X VMlet has to know the exact seman-

tics of VMlet Y calls (such as virtual calls), as well as the binding functions. In

order to simplify Java calls from an external VMlet or script, we have defined an

IDL (Interface Definition Language). This language is composed of a small subset

of keywords, such as (externalize-class cl), (externalize-field cl name sign

type) and (externalize-method cl name sign type)7. Interface descriptions are

compiled to the front-end language of the Micro-VM: each Java symbol is associated

with a Micro-VM symbol. For example, a symbol java.lang.Object.clone sign8

is associated with the clone() method of the java.lang.Object class. Any call to

java.lang.clone sign A is transparently rewritten to a virtual call to Java method

clone, through the bindings at the JnJVM level. Hence, any VMlet can transparently

interoperate with the JnJVM.

To implement this feature, we define one macro9 for each kind of Java call and field

access. The only overhead introduced is therefore the memory footprint of the Micro-

VM symbols (i.e., 16 bytes each). To help application adapting methods, Micro-VM

symbols keep a pointer to the meta-description of their associated method. This IDL

can be bypassed by any application willing to do low-level manipulations.

7where type is either virtual, special or static.
8where sign is the method’s signature.
9As described in [31], the Micro-VM defines a pre-processing mechanism that allows code transfor-

mation/rewriting before native code generation.
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4.3 Introspection and reification

The introspection is handled at the Micro-VM level by dedicated functions, such as

(lookup-method cl name signature). Those functions allow the direct manipulation

of data structures associated to any components of the JnJVM. Every part of those

data structure can be accessed and modified from an application, especially the pointer

to native code for the methods. This introspection layer can also be used to wrap

applicatives aspects dynamically. The components manipulated by the non-functional

part of the application are the internal components of the JnJVM.

4.4 Bytecodes Compilation

Java methods are not interpreted, but dynamically compiled to native code by the JIT

components of the JnJVM. This component is based on the Virtual Processor of the

Micro-VM (called the VPU [30]). Hence the JIT of the JnJVM is portable across

any architecture with a Micro-VM.

The VPU uses a stack-based representation for the code. It does not define any

bytecode for itself: compiling a function is done through stack manipulation functions.

Since Java bytecodes are executed in a stack-based machine, the mapping is quite

simple.

(def-opcode .goto 167                                      ;;; Define the opcode.
  (lambda(op code-input curseur env comp vpu)              ;;; The first pass
    (opinfo.def-label env (+ curseur (read-s2 code-input)));;; defines a label
    (+ curseur 3))                                         ;;; and consumes 3 bytes.
  (lambda(op code-input curseur env comp vpu)              ;;; The second pass compiles.
    ;;; ‘lab’ is the VPU reference of the label
    (let ([lab  (opinfo.label (opinfo.at (env.opinfo env) 
                              (+ curseur (read-s2 code-input))))])
      (:compiler.vpu.br-int vpu lab)          ;;; asks the vpu to jump on lab
      (+ curseur 3))))                        ;;; and consumes 3 bytes.

Figure 2: The goto bytecode
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For example, Figure 2 shows how to compile the goto opcode. The first pass defines

a label in the VPU and the second one jumps to this label. All opcodes in the JnJVM

are compiled in the same way.

While, the first pass is used to define branch point in the VPU, the second one is

used to compile the bytecode itself. The VPU’s functions are used to register the stack

manipulation. After this second pass, the internal compilation function of the VPU is

called to produce the assembly function directly into the memory.

Compiled functions are stored in collectable objects : the garbage collector frees the

associated memory when a function is no longer used.10 Thus, the the non-functional

part of the application is freed from memory management.

5. Applications and performance measurements

We presents some example applications: a standard JVM, a remotely adaptable JVM

and a JVM using escape analysis to optimize memory management.

5.1 The reference virtual machines

These examples of active applications instantiate:

• a standard JVM, fully compliant with Sun’s specification [17, 23]. Basic classes re-

quired to bootstrap the JVM were taken from the GNU ClassPath project [16].

This active script is used for compatibility and performance tests and can be used

to execute any standard Java application.

• the same JVM with the possibility of adapting on-the-fly the internal compo-

10Compiled functions keep references to other functions and variables they use.
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nents of the JVM. As illustrated in Figure 3, such a JVM is remotely managed

by launching a control process, responsible for receiving and executing serialized

code11 from the network, before starting the Java application itself. Reconfigu-

ration commands are sent to the JnJVM while the application is running.

ASTApplication
Control Process Server

Memory

JnJVM

Figure 3: Remote reconfiguration of a JnJVM

Even if mechanisms to secure the remotely adaptable JVM exist, we did not in-

vestigate this aspect any further: functions and symbols used by and AST can be

(read/write)-protected or isolated in a separate namespace in order to safely check

remote-user rights. Especially the define or set! symbols can hidden/suppressed in this

temporary namespace, hence disabling any possibilities of modification bypassing the

strict set of abstractions exported by the namespace.

5.2 Escape Analysis and Stack Allocation

This section illustrates the addition and management of an application-specific attribute

used to indicate the lifetime of objects allocated within a method, allowing the compiler

to decide whether or not an object can be destroyed automatically when the method

returns.

The goal of this example is to adapt on-the-fly a JVM to memory-stack allocation.

It is based on code analysis called Escape Analysis [3]. This static analysis determines

11We use an intermediate representation: Abstract Syntax Trees (AST) for code migration.
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whether the lifetime of the data exceeds its static scope (the scope of its declaration). In

Java, the static scope is the method in which the object is allocated. When an object

is created in a method, escape analysis aims to determine whether this object can be

accessed or not after the method returns. If not, the object can be placed in a special

region — in stack memory, called “stack allocation” — instead of the heap memory.

Stack allocation can have several positive effects on the execution of a program. For

example, it reduces the Garbage Collector workload, since it does not have to manage

data allocated in the stack. This can lead to a decrease of the GC execution time and

therefore improve the global execution time of the program.12

We use an off-board static tool to compute escape analysis, resulting in a list of

allocations that can be “stack allocated”. A Java code attribute, named EscapedMap,

inside the class file marks each bytecode new that can be “stack allocated”.

Table 1 shows some static Escape Analysis benchmarks using our off-board tool.

The benchmarks we selected (the sequential benchmarks) are a subset of the applica-

tions developed by the JavaGrande Forum [12] using the Java GNU ClassPath li-

brary [16]. These static results are comparable with those presented in prior work [15, 3].

Furthermore, thanks to stack management, runtime execution decreases up to 30%.

In order to respect the size limitation of processes stack, we use a pseudo-stack

(in the heap) to store “stack allocated” objects. When a method returns, a function

is called to update stack pointer and finalize objects in the frame. Nonetheless, this

solution raises a problem: when an exception occurs, we must be able to finalize the

“stack allocated” objects, in particular those which were allocated in “sub-functions”.

Therefore, we slightly modified the throw(object) function so that it finalizes allocated

12Of course, escape analysis has to respect the pointer safety policy, thus the result of escape analysis
belongs to the Trusted Computing Base (TCB) of the platform. We do not discuss this part in this
paper.
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Program
Stack Allocation

Total
Allocation

considering that native methods
escape do not escape

GNU ClassPath 543 (4%) 800 (6%) 13226
JavaGrande Forum 363 (46%) 386 (49%) 774
−→ Euler 18 (31%) 18 (31%) 57
−→ MolDyn 3 (33%) 3 (33%) 9
−→ Montecarlo 4 (4%) 6 (6%) 104
−→ Raytracer 11 (19%) 11 (19%) 57
−→ Search 7 (24%) 7 (24%) 29

Table 1: Static Escape Analysis benchmarks

objects13.

This example demonstrates how an active application can enhance the JVM with

relatively low development cost (about a hundred lines of code).

5.3 Performance measurements

In order to evaluate our Java VMlet we compared it with IBM JVM (with a JIT) and

Blackdown JVM (no JIT) using the JavaGrande benchmark [12] on a 466 MHz

PowerPC running Linux14. Results are summarized in Table 2. The JnJVM appears

to be 3 times slower than its IBM counterpart, but 12 times faster than Blackdown

JVM. The gap between our Java VMlet and Blackdown comes from the JIT com-

pilation: most operations from the benchmark are embedded in loops, which are faster

when compiled into native code than when interpreted.

The difference between the JnJVM and IBM mainly comes from the optimizations

performed during the dynamic compilation, especially the use of registers on stack to

13As a result, management of try/catch blocks has also been slightly modified.
14Since IBM and Blackdown JVM do not run on bare hardware, we used Linux as a common

host system.
154 fields.
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AddInt AddLong Set Create15 Throw Call
106add/s 106add/s 106set/s 106objects/s 103excp/s 106call/s

IBM1.3.1 456 215 148.9 1.38 313 55.4
JnJVM 141 1.8 37.2 0.61 107 17.6
Blackdown 2.0 1.6 2.0 0.35 1753 0.7

Table 2: Evaluation of the JnJVM

store local variables. Our VPU does not evaluate local variables lifetime, hence they are

stored in the stack instead of recycling registers. As a consequence, most assignments

involve a memory access, which slows down the execution. Nevertheless, the VPU

is still a research prototype, not a highly-optimized commercial product as its IBM

counterpart. Another weakness of our prototype explaining the performance overhead

lies in objects allocation. We used a standard “mark-and-trace” algorithm, based on

Boehm’s garbage collector [4]. Thus, Micro-VM’s internal objects (around 46.000),

which have a greater lifetime than Java objects lifetime, are uselessly considered each

time a garbage collection is issued. Then, a generational approach for memory man-

agement would significantly increase performance. Implementing a distinct garbage

collector for the JnJVM could be another solution, but it goes in opposition to VVM’s

objectives.

6. Conclusions and Perspectives

This paper presented the JnJVM, a flexible Java runtime, based on the VVM archi-

tecture, that can be dynamically adapted to applications’ needs as well as to resources

available on the target device. Since it is entirely expressed in terms of the Micro-VM

and its VPU, the resulting JVM will run on any platform that they support (currently

Linux, THINK, MacOS). Such a platform is THINK, meaning that the JnJVM can
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execute standard Java programs on “bare” hardware.

This approach introduces dynamic adaptability at the lowest level of the runtime

architecture. In contrast with more traditional solutions (such as adapting an existing

VM to a specific application domain), it offers more formalized support for VMlet

descriptions, with a higher level of expressivity achieved through specialization of the

Micro-VM compiler’s semantics to fit the needs of a given VMlet. To illustrate the

benefits of this dynamic flexibility we show how a Java runtime is transparently adapted

when loading an application modified by Escape Analysis to use this extra-information

for performance purpose.

The evaluations of the JnJVM show that the VVM approach can bring dynamic

flexibility and interoperability without sacrificing performance. However, an optimiza-

tion of some mechanisms is still necessary to compete with industrial products such as

IBM JVM.

Future directions for the JnJVM include the construction of a flexible, real-time

JavaOS for smart devices based on the Micro-VM and THINK. Other bytecoded

programming languages will be targeted to the Micro-VM, in order to improve its

architecture and abstractions.
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