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ABSTRACT

As systems grow more and more complex, raising severe
evolution and management difficulties, computationnal re-
flection and aspect-orientation have proven to enforce sep-
aration of concerns principles and thus to address those is-
sues. However, most of the existing solutions rely either
on a static source code manipulation or on the introduction
of extra-code (and overhead) to support dynamic adapta-
tion. Whereas those approaches represent the extreme of a
spectre, developpers are left with this rigid tradeoff between
performance and dynamism. A first step toward a solution
was the introduction of specialized virtual machines to sup-
port dynamic aspects into the core of the execution engine.
However, using such dedicated runtimes limits applications’
portability and interoperability.

In order to reconcile dynamism and performance without
introducing portability and interoperability issues, we pro-
pose a dynamic reflexive runtime that uses reflection and
dynamic compilation to allow application-specific dynamic
weaving strategies, whithout introducing extra-overhead com-
pared to static monolithic weavers.
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1. INTRODUCTION

Nowadays systems are growing more and more complex,
thus increasing development costs and raising severe evolu-
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tion and maintenance difficulties. Most often, integrating an
unanticipated feature into a traditional monolithic applica-
tion requires an in-depth knowledge of internal interactions
and side-effects and is both time-consuming and error-prone.
In response to those issues, Separation of Concern principles
have been proposed and techniques such as computational
reflection, aspect-orientation and subject-orientation have
emerged as a solution toward these principles.

However, most of those solutions are still relying on static
manipulation of applications’ source code or intermediate
representation,! hence preventing any live adaptation in re-
sponse to unexpected changes. Higher level of dynamism
have been proposed through the introduction of interceptors,
which results in extra-overheads. Developers are thus left
with a rigid tradeoff between dynamism and performance.
On one hand, static solutions, as AspectJ [12], rely on a
compiler for code specialization and aspects wrapping. The
final application is thus as rigid as any standard applica-
tion. On the other hand, dynamic approaches support late
bindings. Hence, they allow more parameters, such as avail-
able resources or execution conditions, to be taken into ac-
count, and potentially enable support for dealing with un-
expected changes. Such dynamic solutions, as Jac [1] for
aspect-oriented programming (AOP) in Java, rely on the
introduction of indirections and thus come at the price of
some performance overhead. Moreover, the weaver is still
a rigid and closed component: typically the weaving strat-
egy can not be adapted to application-specific semantics and
constraints. The main reason is because this tradeoff is fixed
during the weaver conception.

A first step toward reconciling performance and dynamism
consists in runtime-level aspects weaving, as with dedicated
virtual machines. Such specialized virtual machines provide
support for aspects weaving at a lower level, typically in
the core of the execution engine, hence eliminating the need
for meta-level indirections and resulting in far better per-
formance. However, such solutions lead to a proliferation of
ad-hoc virtual machines poorly interoperable, thus seriously
limiting the portability.

Based on those observations, we have proposed a dynamic
reflexive runtime, called the M1crRO-VM, which uses reflec-
tion and dynamic compilation to provide support for effi-
cient dynamic aspects at the lowest possible level, hence rec-
onciling dynamism and performance. Moreover, the MICRO-
VM defines a common language substrate upon which ap-

'such as Java bytecodes.



plications build a flexible execution environments dedicated
to themselves, avoiding the interoperability and portability
issues raised by specialized virtual machines and traditional
one-size-fits-all approaches. This runtime is based on a lan-
guage and hardware independent platform called the Virtual
Virtual Machine (VVM) [15].

The remainder of this paper starts by presenting main
techniques for supporting aspects and reflection, focusing
on Java environments since they are representative of the
work done in this area. Section 3 gives an overview of
the MICRO-VM’s architecture, while Section 4 describes the
mechanisms supporting dynamic aspects. An application to
the construction of an aspect-enabled Java virtual machine
is presented in Section 5, followed by some conclusions and
perspectives in Section 6.

2. RELATED WORK

Solutions for introducing reflection or aspect-orientation
in Java environments fall into three categories: (i) using
compilation techniques, (ii) using bytecodes modification,
(iii) using a specialized virtual machine. However, each of
these approaches rely on interception of both method calls
and field manipulations. In the remaining of this section, we
use the term interception points to denote both join points
and reflection points.

Compilation-based techniques consist in statically insert-
ing interception points during the compilation of the appli-
cation. Reflective Java [27] and AspectJ [12] use an external
language to describe the transformation of the application’s
source code into an augmented version containing calls to
the meta-objects (for Reflective Java) or Code Advice (As-
pectJ). OpenJava [21, 22] extendsthe Java language with
new keywords dedicated to interception points definition.
As interception code is inserted before compilation, no in-
direction to the Java reflection API is needed, resulting in
optimized applications’ code. However, such solutions al-
low a-priori insertion of interception points, hence a lack of
dynamism (the number of interception points is statically
fixed) and a lack of support for introspection of interception
points.

Solutions based on bytecodes rewriting allow the deploy-
ment of aspects and reflexive protocols into compiled code.
Not only source code is no longer required for modification,
but integration of interception points can be postponed (de-
layed) to execution time.

Compilation-based technique and bytecode rewriting offer
the same possibility, but the adaptation don’t need to ac-
cess to source code with bytecode rewriting.Since it uses the
Java reflection API to redirect interception points to target
methods performances are still poor. Tools such as BCel [9]
and Javassist [7, 8] allows to modify existing bytecodes at
load-time. Dalang [24] is oriented toward reflection and thus
encapsulate both functional code and meta-level code in an
automatically generated class.

Kava [26, 25] allows to encapsulate sequences of bytecodes
and to redirect them to meta-objects. The three main as-
pect oriented platforms, Jac [14, 1], JBoss OAP [2] and As-
pectWerkz [6], are using bytecodes rewriting to inert inter-
ception points into Java bytecodes. Advice are expressed us-
ing the Java language (Jac), XML-based configuration files
(JBoss and AspectWerkz) or comments in the Java source
code (AspectWerkz).

Using a specialized virtual machine allows to deal directly

with internal representation of methods, exceptions and fields
and thus to optimize interception points. In addition, weav-
ing and meta-objects protocols can be defined inside the
virtual machine. MetaXa [10, 11] proposes a layered MOP,
Guaran4 [16, 19, 18, 17] allows to (re)define the sequence of
invocations on meta-objects associated with a base object.
SteamLoom [5] uses a modified Java virtual machine (based
on IBM’s JikesRVM [3]) to weave aspects at the virtual ma-
chine level, resulting in far better performance.

Specialized virtual machine based approaches are thus
both more dynamic and more efficient solutions: the set
of interception points can be dynamically extended while
the modified virtual machine avoids indirections to the Java
reflection API. However, using specialized virtual machines
limits the portability of applications specifically developed
for such platforms. Thus, we investigated a solution to let
the application decides what kind of specialized virtual ma-
chine match best its needs. Our approach offers both the
same level of portability as compilation-based technique or
bytecode rewriting, and the same dynamism and perfor-
mance as dedicated virtual machine.

3. THE MICRO-VM RUNTIME

Our approach relies on a reflective and minimal execution
environment, called the MicRO-VM.2
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Figure 1: An overview of the Micro-VM.

The MIcrO-VM is dedicated to building execution envi-
ronments. It is structured as a set of interfaces and compo-
nents, which are based on the ODP Reference Model [13].
The MICRO-VM is both a minimal virtual machine (since it
can execute abstract instructions) and a dynamic compiler.
It offers full flexibility because of two properties: (i) the
MICRO-VM is entirely open and reflexive, thus anything
(from its internals to application code) can be adapted; (ii) the
dynamic compilation inherent in the Mi1crO-VM allows on-
the-fly reconfiguration.

As illustrated in Figure 1, applications are loaded®, parsed
and compiled into a native representation of their compo-

2For a more detailed description of the MICRO-VM, previ-
ously called YNVM, see [15].

3 Application loading can rely on the default MICrRO-VM
loader or any format-specific loader previously loaded into
the MICRO-VM.
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Figure 2: Reification of a component

nents by the MICRO-VM’s dynamic compilation chain. The
compilation is done through a Virtual Processor Unit, called
the VPU [20]. The VPU is an abstract stack machine which
tranfrom a sequence of abstract instruction into an asembly
code. VMLets are used to manipulate and modify both the
MIicrRO-VM internals and applications.

This minimal execution environment is then extended or
specialized according to a given application domain (as with
a Domain Specific Language-based approach). This adap-
tation consists of loading a VMLet, which describes a ded-
icated execution environment. This specification directly
extends the MICRO-VM with new dedicated primitives, op-
erators, abstractions for resource management, or language
support for dynamic compilation. While remaining a generic
virtual machine dedicated to execution environment con-
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struction, the MiCRO-VM however becomes a native, domain-

specific execution environment too, offering the same se-
mantic and performance as any other native, hand-coded,
domain-specific execution environment.

Applications executed by the MICRO-VM are called ac-
tive applications. They are composed of two distinct parts:
the application code (for example, a Java class file) and
additionnal VMLets loaded by the M1crRO-VM. Those VM-
Lets adapt the MICRO-VM to the application’s needs. For
example, an application based on a JVM with persistent
objects is composed of a JAVA program (the application), a
Java VMLet defining a standard JVM and an additionnal
VMLet adapting Java objects’ storage.

4. DYNAMIC ASPECTS SUPPORT IN THE
MICRO-VM

As a reflexive runtime, the M1CrRO-VM provides a meta-
level. Meta-data are kept from the dynamic compilation and
associated with components, symbols, interfaces and primi-
tive objects (expressions, internal objects, syntaxes and func-
tions). Figure 2 illustrates the relation between data* and

4This includes executable code, which we consider code to
be a special form of data.

meta-data. An application has defined a component, namely
Foo, which is compiled from its high-level description into a
native form through the dynamic compilation chain. This
dynamic compilation chain includes parsing, as the MICRO-
VM supports different input languages but rely on an AST-
based abstract code representation,’ domain-specific code-
transformation/analysis (through the associated VMLets)
and compilation of the intermediate representation into na-
tive code. Meta-data associated with the resulting compo-
nent includes the name of the interface it implements. This
interface (Fooltf in the figure), which is a first-class object,
has associated meta-data resulting from its compilation, in-
cluding its abstract representation (a list of methods’ signa-
tures in the figure). The list of functions’ symbols that a
component uses to implement an interface is also kept and
associated to its meta-data. In turn, each of those symbols
has the abstract representation of the corresponding func-
tion associated to its meta-data. Therefore, given a compo-
nent’s symbol, the MICRO-VM can retrieve its methods, the
functions which implement them and access their abstract
code representation. Such intermediate representations are
manipulated as simple lists of expressions (AST) to generate
modified versions, through dynamic compilation of the new
abstract code representations.

(define .Fooltf ;; the meta-description
(def—interface "simple-interface" ;; its name
.meth)) ;; and one method

(define .Foo ;; the meta-component
(implement "simple-component" ;; its name
Fooltf ;; implement the Fooltf interface
(lambda(comp buf) ;; called with a printin
(:component.write—str buf "SimpleInterface<")
(:component._print (name comp) buf)
(:component.write—str buf ">"))
0 ;; the finalizer
[(lambda(comp x)
(:system.printf "; [%d], call meth on \"%s\"\n"
X
(:object.print—string comp)))

;; the fields of this component
[word name]))

Figure 3: Construction of a component.

The figure 3 illustrates how components are defined. The
Fooltf interface is defined at line 1 with one method called
meth. A component Foo is defined at line 5: it implements
the Fooltf interface and have a field called name (at line 19).
With the definition of Fooltf, a meta-interface is allocated®.
Within this meta-interface, a meth symbol is defined. This
symbol is a macro which allows an application to call the
method on a component. This call is inlined in the caller.
The interface of a component is a virtual table. Each entry
contains the implementation of a method of the interface.

®The MICRO-VM uses a common Lisp-like Abstract Syntax
Tree (AST) intermediate representation.

5Such meta-interface are collected by the underlying
garbage collector.
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Symbols generated during the definition of interfaces are
also used to store methods’ offsets in this virtual table. For
example, the meth symbol store the offset of the method in
the virtual table. Methods’ offests are then used to modify
components.

(define .ast (:object.method.definition ;;; the ast of
(:object.method.deref ;;; the method associated with
(word ;;; the code at
(+ meth 535 “offset of meth” in
(:component.md._vt Foo)))))) ;; Foo’s virtual table

(set! (word (+ (:component.md._vt simple—component) meth))
;; replace the code with
(lambda(input x)
(:system.printf "A new method\n")
;; we can put the old ast here

)

Figure 4: On the fly modification of a component.

The figure 4 gives an example of a component’s dynamic
modification. At line 1, the previous AST is stored in an
ast symbol. Then, this AST is modified and stored in the
component’s virtual table. The reflexive layer of the M1CRO-
VM does not change the execution time (the aspects are
inlined in the method), but a lot of meta-data are preserved
(the cost in memory can be important). Using virtual tables
has the same cost as the virtual calls in C++.

The MicrO-VM is written in C and the internal com-
ponents use the same format (virtual tables and fields).
Meta-data are generated through the compilation chain of
the MICRO-VM and then loaded on demand: a VMLet can
modify the internal components of the MiCRO-VM, in par-
ticulary the entry syntax’.

Let us consider a generic example of dynamic weaving
which uses this meta-level: a Weaver component is given an
aspect to wrap around the M1 method of a Foo component.
As illustrated in Figure 2, the weaver uses the meta-data
associated with the Foo component to get the symbol asso-
ciated with the function implementing the M1 method for
the component (F1 in the Figure). The meta-data associated
with the F1 symbol contains the intermediate representation
describing this function’s code (as a list of expressions). As
represented in Figure 5, given the abstract representation
defining the aspect (both pre-code and post-code) and the
abstract code representation of the target F1 function, the
weaver produces a new abstract representation (a simple
list object) containing both the aspect’s code and the origi-
nal set of expressions corresponding to the target function.
Then, this new AST is dynamically compiled into native
code through a call to the underlying VPU and the weaver
replace the original reference to the F1 symbol by a reference
to the freshly generated function (F'1l in the figure). Hence
aspects are wrapped on-the-fly without the traditional over-
head tied to interception techniques.

The performance of such dynamic weaving is heavily tied
to those of the dynamic compilation chain. For example,

"We can not generate AST for the internal functions, but
we plan to (re-)write the MiICRO-VM in MICRO-VM to gen-
erate a new binary from the assembly code.

An aspect:
{pre-code}
{post-code}
{ ........ (Ma:a—d«:;lta) (Metard_ata) ................. :
i oeprl E{{precode} {
: }expr_k —»@—» expr_1
NPt ) %gsr—code}

Micro-VM

Host System |
Figure 5: Dynamic generation of an aspectified
method

weaving a simple aspect (a dozen of high-level instructions)
around a bigger method cost approximately a hundred micro-
seconds on a 290MHz G3 PowerPC running Linux 2.4. This
corresponds to the insertion of the aspect’s code into the
abstract representation of the method and the dynamic gen-
eration of a new native representation.

5. APPLICATION TO AJAVAVIRTUAL MA-
CHINE

In order to illustrate our approach, we present an aspect-
enabled Java virtual machine, which provides dynamic as-
pects support into the core of the execution engine. As
opposed to specialized runtime approaches, such as Steam-
Loom, which provides (and requires) dedicated virtual ma-
chines, hence limiting portability and interoperability, our
solution rely on the dynamic adaptation of the Java runtime.
We have developed a new VMLet: a complete and standard
Java virtual machine built with the component inherited
from the MICRO-VM [23]. The aspect weaver described in
the previous section is used to modify the behavior of the
Java virtual machine dynamically. We used it to build a
Java applicative weaver inspired from SteamLoom [5]. The
active application is splited in two part : a standard Java
binary and two VMLets. The first one is the Java virtual
machine and the second the applicative aspect specialisa-
tion. The second one can be loaded during the execution
of the application. Our Java virtual machine support for
dynamic aspect weaving allows:

e a high-level of dynamism and flexibility (Java aspects
are weaved/un-weaved on-the-fly);

e good performance (no indirection to the Java reflection
API, dynamically inlined aspect’s code);

e application-specific aspect model and strategies (as-
pects support is dynamically integrated into the run-
time, potentially by the application itself);

e a high level of portability (the active application spe-



10

cialize the Java VMLet and create the applicative as-
pect weaver).

Applicative aspect

3—Wea&
Application / USE
L
, "aspect weaver" aspect
P- weaves = e P P
‘\{,L]avar\(VM e
1- load —

Figure 6: Two levels of aspects

Active
pplicatior

Figure 6 represents those two levels of aspects weaving.
The active application loads the standard Java VMLet into
the MICRO-VM, then it weaves the low-level aspect weaver
(the weaving aspect) in the resulting Java virtual machine,
and finally uses this internal weaver to weave application-
level aspects. Such an approach eliminates the portability
and interoperability issues raised with statically specialized
virtual machines. Moreover, it allows aspects-related strate-
gies to be application-specific.

The weaving aspect uses directly the virtual machine in-
ternal functions to retrieve the description of the methods
around which to weave aspects. The MICRO-VM’s lan-
guage is extended with new aspect-related primitives, such
as (:aspect.weave-on-meth <a-method> <a-pointcut>) for as-
signing the address of <a-pointcut> to <a-method>.

Figure 7 illustrates how an aspect is defined and weaved
on a pointcut. The desc symbol holds a pointer to the inter-
nal abstract code representation of the associated method
and the orig symbol is a copy of the original method (hence
the name). The fct() function is weaved on desc and simply
outputs the name of the method which is going to be in-
voked. The (:aspect.invoke-virtual orig value obj) expression
invokes the original method, with an inlined call to fct(), as
any standard Java method call: we benefit from the dynamic
compiler (M1crRO-VM'’s VPU) to speed-up the invocation of
weaved methods.

(define .class (get—class (jvm) "Hello"))
(define .desc (get—method class "m" "(I)V"
ACC_VIRTUAL))
(define .orig (dup—method desc "m-orig"))
(define .fct
(lambda(blackbox value this)
(let ([meth (blackbox.method cache)])
(printf "; call: %s\n" (print—string meth))
(invoke—virtual orig value this)
(printf "; end of: %s\n" (print—string meth)))))

(wave—on—method m fct)

Figure 7: An example of application-level aspect
weaving.

Whereas the fct() function typically calls the original method,

it can call any other methods from any other classes. We
did not define a proceed keyword as in Jac, but it is seman-
tically equivalent. As methods’ abstract representations are

augmented with aspects abstract representations (through
list manipulations), aspects can be un-weaved. The result-
ing code is equivalent to the one statically produced by any
static aspect-weaver (as AspectJ), while offering a high level
of dynamism.

Another example of dynamic specialization of a Java vir-
tual machine for aspects support consists in dynamically
weave aspects related to escape-analysis [4]. Applications
are processed by analytical tools and extra-memory manage-
ment information are embedded within their bytecode rep-
resentations. Thus, dedicated virtual machines are required
in order to take advantage of those extra-informations. An
example of extending a MICRO-VM-based Java virtual ma-
chine with escape-analysis support using aspects dynami-
cally weaved into the virtual machine’s core is given in [23].

6. CONCLUSION AND PERSPECTIVES

Based on a reflexive dynamically extensible runtime we
proposed a solution to reconcile dynamic aspects and per-
formance, without introducing any portability issues. By us-
ing dynamic specialization of applications’ runtime, aspect-
related strategies are application-specific. Thanks to the ef-
ficient underlying dynamic compiler, dynamic weaving per-
formance seems to be promising. Moreover, once weaved,
aspects do not introduce any indirections, hence overheads,
to applications’ code.

Even if the underlying reflexive M1CRO-VM provides mech-
anisms for security/integrity checks on aspects’ interactions,
our weaving aspect does not perform such verifications.

We plan to investigate further interoperability issues and
especially low-level aspects support in a multi-language en-
vironment. For example, weaving C++ aspects in Java ap-
plications.
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