
Towards Active Applications: the Virtual Virtual

Machine Approach.∗

F. Ogel, G. Thomas, I. Piumarta, A. Galland†,

B. Folliot, C. Baillarguet

Regal group, LIP6 - Université Pierre et Marie Curie,

4, place Jussieu, 75252 Paris Cedex 05, France

email: firstname.lastname@lip6.fr,

http://regal.lip6.fr/projects/vvm

Abstract

With the wide acceptance of distributed computing a rapidly grow-

ing number of application domains are emerging, leading to a growing

number of ad hoc solutions that are rigid and poorly interoperable. Our

response to this situation is a platform for building flexible and interop-

erable execution environments called the Virtual Virtual Machine. This

article presents our approach, the architecture of the VVM and some of

its primary applications.

1 Introduction

Traditional operating systems, such as Unix or Windows, seem a poor match for
the needs of emerging applications. They rely on a “one-size-fits-all” philosophy
that exports a fixed set of abstractions and applies the same policies to every
application. These policies, embedded in the system, are designed to match the
needs of most “standard” applications and are fixed at the time the system is
designed. This philosophy does not sit well with emerging applications whose
needs are difficult (or impossible) to anticipate in advance.

Many applications are therefore penalized by rigid, a priori resource man-
agement choices (such as scheduling and memory paging algorithms) and would
perform better if given different ones. A classic example is the interaction be-
tween a system’s memory pager and a DBMS:1 the application, or even the
DBMS itself, may have sufficient knowledge to tune the memory paging algo-
rithm (which is often a static, general-purpose strategy such as LRU).2

∗This work is partially funded by the european project IST COACH (2001-34445).
†also with Gemplus Research Labs, La Vigie, Avenue du Jujubier, ZI Athelia IV, 13705 La

Ciotat Cedex, France.
1DataBase Management System.
2Least Recently Used (is first evicted from the cache).

1



This observation led to the development of several flexible operating system
architectures. Their goal was to give applications a way to specify their needs
and then to adapt resource management accordingly. A similar observation has
been made at other “levels” within the execution environment: virtual machines,
middleware and languages. Ad hoc solutions to increase flexibility have been
proposed, as within middleware: although distributed environments as CORBA
and EJB are becoming de facto standards, they are still complex and dedicated
to client-server-based applications. Moreover, they are not intended to adapted
or specialized to other application domains or architectures. Hence the pro-
liferation of ad hoc solutions, each one being dedicated to a given application
domain, poorly reusable and interoperable with each other.

Examples can be found with new embedded systems/devices (mobile’ phones,
smart cards, etc.), with Quality of Service (QoS) management (real-time, fault-
tolerance, etc.), and (in general) with the adaptation of any service according
to some unforeseen need, constraint or event.

As long as an artificial “red line” exists between language and system, flex-
ibility in execution environments will remain limited. Operating systems, even
flexible ones, face a barrier preventing them from addressing any language issues
(such as interoperability or flexibility). At the other extreme, virtual machines
(and other language-based approaches to flexibility) consider the operating sys-
tem as a rigid, closed black box, thus precluding any adaptation of their under-
lying abstractions or services. Between the two we find middleware, which is
limited both by the rigidity of the underlying operating system and by its lack
of knowledge of application internals.

We therefore propose a new, systematic approach for constructing adapt-
able, specializable and interoperable environments based on language and sys-
tem reconciliation: the Virtual Virtual Machine (VVM) [11]. The VVM is both
a programming and an execution environment, whose goals are: (i) to facilitate
adaptation of language and system aspects according to a given application do-
main, such as smart cards, satellites or clusters; (ii) to provide dynamic extensi-
bility, allowing “on the fly” modification to the execution environment (adding
protocols, hardware support, algorithms or even “bug correction”); (iii) to pro-
vide a common language substrate on which to achieve interoperability between
different languages/applications.

The remainder of this paper starts by presenting related works in Section 2.
The VVM approach and its prototype are described in Sections 3 and 4, respec-
tively. Section 5 presents the application of the VVM to the development of
active Java applications, followed by conclusions and perspectives in Section 6.

2 Related Work

Although flexibility in execution environments is an active research area, most
projects focus on one specific area: operating systems, virtual machines or mid-
dleware.

The rigidity of existing operating systems, as discussed in Section 1, has

2



led to many flexible operating system projects. Their objectives are to give
control over resource management back to the application. In order to achieve
this level of flexibility, system strategies and services are organized as libraries
or modules and presented as system extensions. Depending on the granularity
of the kernel (exo, nano, micro or monolithic) these extensions are loaded into
the kernel or linked with the application. The two main approaches for flexible
operating systems are therefore: (i) extensible kernels, that support loading of
application code (extensions) in the kernel through a fixed extension protocol
while enforcing security properties to preserve the integrity of the kernel and
thus of the entire system; (ii) minimal kernels that export a reduced set of
features and therefore push the implementation of both resource management
and system services up into the application level. (Any application is then linked
with dedicated abstractions and services.)

Obviously, only the minimal kernel-based approach allows a completely flex-
ible operating system. Whereas minimal kernels do not impose any restrictions
on extensions, extensible kernels rely on both technical constraints (use of a
specific language, compiler, certification tool) and semantic constraints (rigid
security rules, trade-offs involving integrity vs. flexibility, the model imposed
by the extension protocol). Nonetheless, even minimal kernel-based operating
systems address only system aspects (mainly resource management) and thus
do not support any language aspects (such as interoperability and language
specialization).

Middleware has similarly evolved towards dynamic flexibility. The most
rigid middleware has been enhanced with ad hoc features, such as the POA3

and interceptors in CORBA [28]. New-generation middleware exhibits more
flexibility: from dynamic specialization of a generic ORB (as with Jonathan [9])
to the reification of the ORB to support dynamic adaptation/reconfiguration
(as in OpenORB [3] or the 2K [21, 29] distributed system).

The XVM [17] project defines a monolithic, extensible virtual machine, thus
directly applying the extensible kernel-based approach to virtual machines. Al-
though an application can redefine primitives and basic mechanisms (such as
dynamic compilation or the arithmetic operators), the global architecture of the
virtual machine is still imposed, along with various low-level mechanisms, in or-
der to enforce strict security rules that ensure the virtual machine’s integrity.

An important trend for specialization is the use of Domain-Specific Lan-
guages (DSL). Whereas the traditional reflexive approach defines a general
framework, in which application developers can express the application do-
main’s semantics and modify some aspects of the execution environment, the
DSL approach relies on languages restricted to a given application domain,
and thus exposes only high-level, domain-specific abstractions to developers.
This approach is used in many application domains ranging from device drivers
(Devil [25], GAL [31]) through active networks (Plan-P [30]) and schedulers
(Bossa [22]) to Web caches (WebCal [16], CacheL [2]).

The main drawback of DSLs, not considering the time-consuming acquisition

3Portable Object Adapter.

3



of any domain-specific knowledge, is the lack of dynamism. Indeed, the purpose
of this approach is to specialize an execution environment according to an in-
depth knowledge of the application domain’s semantics. This domain-specific
knowledge can also be used for code verification and formal proof. Nonetheless,
once specialized, the execution environment and the application are not in-
tended to undergo further adaptation. Reconfiguration according to unforeseen
events or the emergence of new protocols is limited to what was anticipated dur-
ing the program conception/implementation: the DSL itself and its framework
(compiler, interpreter, etc.) are not dynamically flexible.

Because this approach aims at constructing ad hoc solutions (dedicated
to each application domain) dynamic flexibility does not appear to be a pri-
mary concern: a specialized environment will naturally “match” an application’s
needs. Whereas the DSL approach provides the developer with a dedicated lan-
guage and environment in which to build applications, flexible execution envi-
ronments let application programmers introduce domain-specific semantics into
a generic environment. As illustrated in the following section, our approach is
based on a combination of the minimal kernel and DSL approaches.

By focusing only on a specific part of the execution environment, most
projects exhibit only limited flexibility: operating systems are still too low-level
to manipulate application semantics (and global language features), virtual ma-
chines hide resource management and low-level mechanisms, and middleware
is bound to the flexibility of the underlying operating system while ignoring
high-level language concerns. The artificial separation between language and
system [18] leads to a fragmentation of the execution environment into indepen-
dent and rigid layers.

Our proposal merges system and language into a “meta” execution envi-
ronment that allows direct manipulation and definition of any element in the
execution environment.

3 The Virtual Virtual Machine

Most modern distributed applications and environments are composed of com-
plex and heterogeneous interacting components. Dealing with this heterogeneity
raises severe obstacles to interoperability.

The virtual machine approach is a step in the right direction, allowing inter-
system operability and portability, and promoting mobility/distribution with
a compact code representation and intrinsic security mechanisms. But they
are still dedicated to specific application domains. Let’s consider Sun’s Java
Virtual Machine: it corresponds to an application domain where there is large
amount of available memory, limited access to the underlying system and few
quality-of-service guarantees.

The appearance of new application domains, with widely differing charac-
teristics, implies new virtual machines to match the new requirements (for a
given architecture, as with Java Card [7] for smart cards, the KVM [20] for
mobile telecoms, or constraints such as fault-tolerance or real-time operation in

4



RT Java [6]). This proliferation of ad hoc virtual machines breaks the interop-
erability advantages inherent in the VM approach.

If virtual machines are a step in the right direction but remain far too rigid,
why not “virtualize” them? Hence, instead of developing a new virtual machine
for each new application domain, a specification is dynamically loaded into a
“virtualized” virtual machine (the VVM). This specification describes a virtual
machine dedicated to a given application domain.

Chargement

interpreter

optimiser

code generator

minimal resources access:
memory, IO device,   
processor state, etc.

Boot

µVM

ethXX driver module

ipcForMe module

desc mySocketCreate{ 
...}
res mySocketKill(desc){
...}

...

Figure 1: A minimal execution environment.

The inter-application isolation that results from using virtual machines leads
to inefficient resource utilization and poor interoperability. Indeed, there can
be as many running virtual machines running on a single machine as there are
applications: Java, embedded in the Web browser, the Emacs editor, PostScript
and PDF (Portable Document Format) viewers, Tcl/Tk in graphical user in-
terfaces, and so on.

Using a single generic/meta virtual machine (the VVM) allows a factoriza-
tion of several low-level mechanisms,4 found in practically all virtual machines.
This factorization results in a more efficient management of resources: (i) less
memory used, thanks to the elimination of many redundant components; (ii) re-
sources managed by a unique environment being shared in a more efficient way.

Moreover, this factorization results in a common language substrate at the
lowest level, on which interoperability can be achieved more easily at both ap-
plication and execution environment levels.

4Such as virtual processor or syntax-tree optimizations.

5



A major goal of our architecture is dynamic flexibility and interoperabil-
ity without sacrificing performance. To achieve this the VVM relies on two
principles: (i) minimality in the “core”; (ii) coupling of language and system
components at the lowest level.

Minimality in the core is required for complete flexibility. Indeed, to be
fully flexible, an execution environment must be free of any rigid, predefined
abstractions. The VVM therefore defines an environment as minimal as it is
generic.

Flexibility in execution environments frequently concentrates on adapting
functional aspects to particular needs and constraints. Nonetheless, adapting
language aspects cannot be done without coupling language and system at the
lowest level. Interoperability appears as a direct consequences of this coupling.

Chargement

myPush{
...}
getList{
...}
def-ins myPush
def-prim getList
def-exec threaded
def-mem java
myFileStruct{
...}
def-file myFileStruct
use-mod virtual-mem
use-mod thisFS
use-mod persistance
use-mod real-time
use-device ethXX
use-mod ipcForMe

MyVMlet

MVV dédiée à un système/environnement spécifique

threaded execution module

java memory module

virtual memory module

thisFS module

persistance module

real-time module

ethXX driver module

ipcForMe module

desc mySocketCreate{ 
...}
res mySocketKill(desc){
...}

...

interpreter

optimiser

code generator

minimal resources access:
memory, IO device,   
processor state, etc.

Boot

µVM

Figure 2: Dynamic construction of a dedicated execution environment.

Figure 1 represents an “empty” VVM: it is a minimal execution environ-

6



ment,5 which defines neither resource management models nor abstractions.
This “basic” environment is composed of: (i) an Hardware Abstraction Layer
(HAL)6 responsible for reifying physical resources in a policy-neutral way; (ii) a
generic virtual machine initially composed of a single, reflexive dynamic com-
piler that allows “on-the-fly” construction of arbitrary compilation chains (from
lexer/parser through to native code generator).

This minimal execution environment is then extended or specialized accord-
ing to a given application domain (as with a DSL-based approach). This adapta-
tion consists of loading an “active specification”, called a VMlet, that describes
a dedicated execution environment as illustrated in Figure 2. This specification
directly extends the VVM with new dedicated primitives, operators, abstrac-
tions for resource management, or language support for dynamic compilation.
Hence the VVM, while remaining a generic virtual machine dedicated to exe-
cution environment construction, becomes a native, domain-specific execution
environment too, offering the same semantics as (and comparable performance
to) any other native, hand-coded, domain-specific execution environment.

By loading VMlets into the VVM, both functional and semantic aspects
can be adapted. Interoperability can be defined at the VVM level, through
the use of an intermediate code representation that defines a common language
substrate on which to achieve data and code sharing between both applications
and VMlets.

An application is “typed” with a VMlet-Id, used to find a suitable “loader”.
The application is therefore loaded and executed in an appropriate, specific
environment that includes domain-specific abstractions, drivers, services and
semantics, as illustrated in Figure 3.

4 A Flexible Execution Environment

Faced with the continuing emergence of new application domains, each having
its own needs and constraints, we propose an architecture for a flexible platform
supporting the dynamic construction of adaptable execution environments.

This architecture is structured as a set of components and interfaces, based
on the ODP Reference Model [19]. Each component exports one (or more) inter-
face(s) that are considered “access points” to the component. Figure 4 illustrates
a component X exporting three interfaces (named Interface1, Interface2, and
Interface3 respectively). Exporting multiple interfaces allows a component to
partition its functionality or to reify different aspects of its semantics, such as
the level of security, trust, or QoS.

Interaction between components relies on the concept of bindings, which
are reified through binding factories. Reified communication channels between
components become flexible and can be dynamically adapted, for example: dy-
namically replacing a standard procedure call with a remote invocation in re-

5In fact, it is an execution environment dedicated to the construction of dedicated execution
environments.

6Or a “Kernel Abstraction Layer” when running within a kernel such as Linux.

7



threaded execution module

java memory module

myAppli

call myVMlet

main(){
...}

MVV dédiée à un système/environnement spécifique

MVV dédiée à un environnement d’exécution spécifique

myPush{
...}
getList{
...}
def-ins myPush
def-prim getList
def-exec threaded
def-mem java
myFileStruct{
...}
def-file myFileStruct
use-mod virtual-mem
use-mod thisFS
use-mod persistance
use-mod real-time
use-device ethXX
use-mod ipcForMe

MyVMlet

virtual memory module

thisFS module

persistance module

real-time module

ethXX driver module

ipcForMe module

desc mySocketCreate{ 
...}
res mySocketKill(desc){
...}

...

interpreter

optimiser

code generator

minimal resources access:
memory, IO device,   
processor state, etc.

Boot

µVM

Figure 3: Loading an application.

sponse to the migration of a component, or with a remote group invocation for
dynamically-replicated components.

As illustrated in Figure 5, the core of the platform is a minimal execution
environment composed of two macro-components. THINK 7 [10] is a component-
based HAL developed at France Telecom R&D. Physical resources are reified in
a policy-neutral way, that is, without imposing any semantics. This macro-
component can also be defined as a kernel extension within a “traditional”
operating system, such as a Linux kernel module granting access to the kernel’s
implementation. The second macro-component is a dynamic compiler represent-
ing an “empty” VVM. In order to store compiled code (as well as meta-data kept
from the compilation process) the dynamic compiler relies on a memory alloca-
tor that can range from a simple physical memory allocator to a sophisticated,
MMU-based component; no particular model is imposed or required.

4.1 The Hardware Abstraction Layer: THINK

Whereas traditional kernels are virtual machines defining a set of software ab-
stractions and services (such as file systems, processes, and memory manage-
ment), THINK is a library reifying physical resources,8 (such as physical mem-
ory, MMU, and IRQs) through a set of components and interfaces. No additional

7THink Is Not a Kernel.
8Hence its name.

8



Interface 1

Interface 2

Interface 3

Component
X

Figure 4: Components and interfaces.

Logical resources
reification:
code, data, 
bindings, etc.

 Physical resources 
  reification: 
  IRQs,memory, etc.

Hardware

Minimal Environement

THINK YNVM

Figure 5: A minimal execution environment.

logical abstractions are defined. These components allow direct access to phys-
ical resources, without enforcing any control or management policies and thus
offering complete flexibility.

Figure 6 shows examples of THINK interfaces for VIA microcontrolers and
IRQs.

Although THINK provides a trading service, binding factories and several
device drivers, it is only used, in the context of the VVM project, as an HAL
bootloading a stand-alone “empty” VVM. Any additional abstractions, services
or even drivers are then defined/compiled upon the dynamic compiler.

9



interface via {

int start(key keymanager);

void reset_bus();

void reboot();

void shutdown();

int get_rtc_time();

};

interface irq {

void disable(int nr);

void enable(int nr);

void _register(int nr, char[] handler, char[] arg);

void _unregister(int nr);

};

Figure 6: Interface definition in THINK.

4.2 A dynamic compiler: YNVM

The YNVM 9 is our first prototype of VVM. Its role is mainly to support dynamic
construction of dedicated virtual machines and execution environments. This
implies that it is also responsible for supporting dynamic flexibility. The YNVM
is structured as a set of components and interfaces constituting an open and
flexible compilation chain, as illustrated in Figure 7

The dynamic compiler relies on a garbage-collected object memory, used
to store meta-data. An optional parser converts text, obtained by any input
method, into an Abstract Syntax Tree (AST) stored in this object memory. A
“tree compiler” then converts ASTs into instructions for an abstract stack ma-
chine, whose semantics and execution model are those of C. The tree compiler
also provides meta-data reflecting the state of compiled code and applies trans-
formation rules supplied by the VMlets, if any. Meta-data are organized into
hierarchical namespaces called modules. Using two abstraction levels (AST and
stack machine) allows two independent and specific optimization processes. Fi-
nally, a code generator (containing a platform-specific dynamic assembler) con-
verts the intermediate representation into concrete machine instructions. The
generated instructions are not stored in the internal object memory, but rather
in the application’s memory. Although most expressions are read, compiled and
then executed, a mechanism (called syntax ) provides for the definition of AST
nodes that are executed during the dynamic compilation process, allowing dy-
namic code verification and arbitrary dynamic transformation/rewriting of tree
structures.

The default front-end “language” of this compilation chain is a Lisp-like tex-
tual representation of ASTs. Since the internal components of the YNVM can
be accessed from the application-level, any component in the compilation-chain
can be dynamically redefined; for example, to adapt the semantics of the lan-

9YNVM is Not a Virtual Machine.

10



Parser

Syntax Tree Compiler

Abstract Code 
Compiler

  Code 
Generator 

Optimiser

Object Memory

GC

syntax trees,
meta-data, etc.

objects

abstract
instructions 

concrete
instructions 

Heap

native code

malloc()

Dynamic Assembler

ConsoleKeyboard 

      Files 
(disks, network, etc.) 

Dynamic Objects

dynamic abstract
  instructions

dynamic concrete 
instructions

Figure 7: Structure of the YNVM.

(module dev.console)

(component.define-state fb ;;component framebuffer

x y ;;pointer offsets

cols rows) ;;range

;; defining an interface

(component.export-methods (putc char)

(putcs string)

(putxycs int int string)))

;; instantiation of an interface

(define %default (:component.interface myPutc myPutcs myPutxycs))

(define new (lambda(fb nbcols nbrows)

(component.new %default 0 0 fb nbcols nbrows)))

;; allocating and using a component

(module global)

(define fb-ptr (myBindingFactory bind

(myTrader lookup ‘‘framebuffer’’)))

(define myConsole (dev.console.new fb-ptr 80 25))

(myConsole putcs ‘‘hello world !\n’’)

Figure 8: Creation of a console component.

11



module(dev.console);

component.define-state(fb, //component framebuffer

x, y, //pointer offsets

cols, rows); //range

// interface definition

component.export-methods(putc (char),

putcs (string),

putxycs (int, int, string));

// instantiation of an interface

define %default = component.interface(myPutc, myPutcs, myPutxycs);

defun new(fb, nbcols, nbrows) {
component.new(%default, fb, 0, 0, nbcols, nbrows);

};
// allocating and using a component

module(global);

define fb_ptr = myBindingFactory

-> bind(myTrader -> lookup(‘‘framebuffer’’));

define myConsole = dev.console.new(fb_ptr, 80, 25);

myConsole -> putcs(‘‘hello world !\n’’);

Figure 9: Creation of a console component.

guage or to introduce new ones. An example component definition, using this
default front-end language, is shown in Figure 8. This script defines a names-
pace (dev.console) that encapsulates the component definition. This definition
contains the component-state (its attributes), declared through define-state, a
default interface (%default) and a constructor (new). Since the component de-
pends on a framebuffer component, a binding between the two components has
to be built, through a “trading” component (myTrader) and a binding factory
(myBindingFactory).

A functionally-equivalent script based on a C++-like parser, demonstrating
the flexibility of the compilation chain, is shown in Figure 9.

5 Pomv: a toolkit for Java virtual machines

Java has become a de facto standard for developing distributed applications.
By using a portable bytecoded representation and a virtual machine, it deals
with both hardware and system heterogeneity issues.

Nonetheless, Java Virtual Machines (JVMs) are monolithic and poorly adapt-
able. Moreover, Sun’s reference virtual machine [24] has limited support for
reflection. This monolithic structure has led to the development of many dedi-
cated JVMs, such as the KVM [20] for mobile phones, Java for smart cards [7],
PJama [1], GemStone [12] for persistent objects, MetaXa [26] for reflexive pro-
gramming, and the Real-Time for Java Expert Group [6] that defines the API
of a real-time JVM. Although such dedicated virtual machines remain close to
other JVMs, their development is time-consuming. Each platform deals with
specific problems and remains rigid and poorly interoperable: a real-time JVM
with persistent objects would require yet another dedicated virtual machine,

12



whereas these two aspects are orthogonal.
Moreover, this monolithic structure does not allow dynamic extension of

attribute management.10 Let us consider JVM’s bytecode verification, which is
the foundation of the Java security model [14]. It can be implemented using
several techniques [23] each of which relies on a different algorithm, dedicated
to a given application domain (workstation, embedded systems, smart cards,
etc.). Some algorithms directly modify the application before it is loaded,11

in order to speed-up bytecode verification. They therefore require a dedicated
application loader, corresponding to the verification technique used. In KVMs,
for example, a pre-verifier adds a PCC-like [27] proof to application bytecodes
through a StackMap attribute that can be used only with JVMs supporting this
functionality (at both the loader and verifier levels).

Another use for attributes is escape analysis [4] annotations. Through a
static analysis of the application’s bytecodes, escape analysis establishes ob-
ject lifetimes and indicates stack-based allocation for certain objects, reducing
garbage collection overheads.

We approach dedicated JVMs in a different way, by introducing active ap-
plications. An active application is composed of two distinct parts: a standard
Java application and an active script that is responsible for instantiating a ded-
icated JVM (Figure 10). This architecture allows an application to specify the
internal mechanisms it requires. Whereas traditional meta-object programming
is limited to the application level, our approach allows active scripts to adapt
any internal component within the execution environment.

JVM

Application Application

OS

VVM

Java Entry

load

VVM Entry

Configuration
script

Figure 10: Active Applications

To support active applications, we developed a library called POMV 12 that
provides several “generic” modules. These modules export well-defined APIs
(allowing active applications to replace or modify their JVM’s modules) as well
as an adaptation API that is used to specialize module behaviors according to
the application’s needs, when needed. The generic modules implement Sun’s

10An attribute is a name followed by a meta-data structure giving information about a
class, a method, or a field.

11Or rather, they modify the .class file encapsulating the application.
12Open Platform for Virtual Machines, or Plate-forme Ouverte pour Machines Virtuelles

in French.

13



specification [24] and are built on top of the YNVM; POMV is therefore a
VMlet.

POMV relies on both the YNVM’s adaptation mechanisms and its internal
Just In Time (JIT) compiler, called the Virtual Processor Unit (VPU). Active
scripts are typically written in the YNVM’s default front-end language.

thread

component (memory) JNI

debug

typing

vpu (virtual processor)

access

system

input

VM

loading exception compilation

lookup + link

JVM

Figure 11: Generic modules in POMV

Modules in POMV are organized following a dependency-tree, as shown in
Figure 11.

5.1 Naming module

Java symbols are associated with YNVM symbols: classes are represented by
modules; methods and fields by symbols within modules. For example, the Ob-
ject *clone() method of the java.lang.Object class is represented by the
:java.lang.Object.clone sign symbol, where sign is the method signature. This
naming scheme allows an active script to interact directly with classes loaded
into the JVM.

5.2 Virtual machine definition module

This module defines the basic structures required for the assembly and execu-
tion of a virtual machine. (It is the “centerpiece” of the POMV VMlet and so
replacing it may have repercussions in many places.) A virtual machine is repre-
sented by a structure containing classes’ life-cycle definitions, error management
routines, and a bytecode compiler. Its interface consists mainly of:

14



• Input *open(char *name) opens a class description. By default it uses
the underlying filesystem to find a description file.

• int (*load)(VM *, Class *, Input *) is the class loading function allowing,
for example, the implementation of incremental bytecode loading over the
network.

• int (*check-error)(VM *src, Object *excp) checks if an excp exception,
raised by the src virtual machine, has to be caught at a particular point.
By default it implements the traditional Java algorithm.

• void *(*compile)(Class *, Method *, int access) compiles the given method
and returns a pointer to the resulting native code. By replacing it, the
compilation process can be specialized.

• char reserved[32] bytes reserved for active applications.

Each of these function pointers is an access point to another module. An ac-
tive application that modifies one of these is specializing an aspect of the virtual
machine. The linker module, which cannot be adapted this way, uses a specific
adaptation mechanism. This structure, combined with the error management
and linker modules, permits the construction of virtually any object-oriented
virtual machine.

5.3 Object module

Memory management relies on a portable, exact, incremental, colored mark-
and-trace, inspired by algorithms by Boehm [5] and Dijkstra and Lamport [8].
References are raw pointers into memory.

Each object has an interface (stored at offset 0) that specifies the object’s
behavior in memory. In particular, this interface includes the function respon-
sible for tracing objects (that is, marking all reachable objects as live). This
function is compiled dynamically to suite each Java object type. For example,
given a Java class containing only one reference and 10 integers, the associ-
ated dynamically-compiled trace function will trace only the reference. This
technique not only reduces GC overhead but also reduces confusion between
references and integers holding similar values.

By dynamically removing semaphores and write protection from both the
memory allocator and the garbage-collector, multi-task management can be
deactivated.

Java objects also have a class stored at offset 4. It is a non-typed object
containing meta-data describing the object.

5.4 Classes, methods and fields

Classes, methods, and fields are untyped but garbage-collected objects, con-
taining information required by the JVM. Each structure holds a few reserved
bytes to allow more flexibility for active applications. Since these structures are

15



necessarily bound to a given virtual machine and its associated namespace in
the YNVM, many dedicated virtual machines can co-exist within a single active
application.

5.5 Loading module

This module is responsible for loading Java class description files from some
given input source. The predefined function allows management for previously-
unknown attributes to be added dynamically. Some attributes will be managed
by the virtual machine itself (such as the CODE attribute, which identifies the
bytecode associated with a method); others are silently ignored.

When the load function finds an attribute, it looks for a YNVM symbol
defined with the same name, in which case the corresponding function is invoked.
An active application therefore extends the attribute management simply by
defining a symbol and associating a management function with it.

5.6 Linker module

The linker module is responsible for binding Java symbols to methods or fields.
There are 8 linking algorithms: virtual, static, and special method call, virtual
and static field access, read and write, and the new pseudo-method. Since these
algorithms are very similar (in terms of their adaptation interfaces) we describe
only the virtual call algorithm.

The interface of the virtual call algorithm is composed of two functions:
vpu-call-virtual, responsible for implementing the call on the VPU, and synt-
call-virtual that converts an AST representing a method call into an AST im-
plementing the call algorithm. Typically, the (:java.lang.Object.clone sign obj)
call is rewritten, using the syntax mechanism, to transparently implement the
virtual call algorithm. By modifying these two functions, an active application
can change the call algorithm.

The default algorithms are “classical”. Linking is lazy, a method is not
compiled until it is executed, a class is not loaded until used, and so on. To
allow lazy linking, an inline call cache is used. It contains the information
needed to perform the linking (such as the VVM symbol associated with the
method name), the class of the last object that called the method (to verify
that the virtual method is appropriate for the current object) and a pointer to
a destination function. This pointer is initialized to the virtual linking function
and is replaced by the address of the assembled method after the first execution
of the call.

5.7 Compilation module

The compilation module has a single access point: the compile function, respon-
sible for compiling the bytecode of a Java method. Each bytecode is compiled
by calling through a 256-function switch table. In order to modify the bytecode
compiler, an active application can globally modify the compile pointer in the

16



virtual machine structure or individually modify entries in the switch table. The
bytecode is compiled into the abstract instructions of the YNVM’s stack-based
VPU, allowing the JVM to leverage the YNVM’s internal JIT “for free”.

5.8 Examples

In this section we present some prototypes of active Java applications, concen-
trating on their associated active scripts.

The reference virtual machine

This first example of an active application instantiates a standard JVM, fully-
compliant with Sun’s specification [15, 24]. Basic classes required to bootstrap
the JVM were taken from the GNU ClassPath project [13]. This active script
was used to test POMV and can be used to execute any standard Java applica-
tion.

The adaptable virtual machine

This second example is a remotely-adaptable JVM.

jvm

Application AST
Control Process Server

memory

Figure 12: Remote update

The active application starts by launching a control process, responsible for
receiving and executing serialized ASTs from the network, before starting the
Java application itself. Reconfiguration commands can then be sent to the JVM
while the application is running.

Method modification

This active application modifies Java method behavior at run-time. It relies on
the previous active application: the AST sent to the control process duplicates
the finalize method of the java/lang/Object class, then modifies the original. The
new version prints the name of the object being destroyed, before calling the
old finalize method.

Modifying the finalize method is done by modifying the description of the
java/lang/Object class and by reinitializing every cache with *.finalize() calls,
where * refers to any class. Synchronization is achieved through the semaphores
of java/lang/Object and of the in-line caches.

This short script (42 lines of code) demonstrates how an “aspect wrapper”
can be built.

17



Escape analysis

This example illustrates the addition and management of an application-specific
attribute used to indicate the lifetime of objects allocated within a method,
allowing the compiler to decide whether or not an object can be destroyed
automatically when the method returns. The management of this attribute
reduces garbage collection overheads.

Firstly, the active script defines the EscapeMap symbol, which is used to
read the data structure of the attribute. This structure is stored in the reserved
bytes of the class structure.

It then modifies the function of the compilation module in charge of allocat-
ing the method’s frame on the stack so as to allocate a structure called sea on
the stack. This structure contains the addresses of the objects that should be
destroyed when the method returns.

Finally, the behavior of both the object creation bytecodes and the method
return bytecodes is modified. Object allocation opcodes begin by checking if the
allocated object has a lifetime limited to the current method, in which case the
object is directly allocated on the stack (through a call to the YNVM’s version
of the C function alloca) and marked as to be destroyed in the sea structure.
Opcodes for method return finalize the to be destroyed objects by applying the
finalize method to each instance marked in the sea structure.

This example demonstrates how an active application can enhance the JVM
with relatively low development cost (about a hundred lines of code).

5.9 Performance evaluation

Performance measurements are still in progress, hence we present only prelimi-
nary results.

Launching a POMV-based JVM is rather slow: 3 seconds on a PPC G3
366MHz against 1 second in the case of Sun’s native JVM on the same machine.
This results from the dynamic compilation approach of the VVM: a POMV-
based JVM is dynamically compiled in its entirety when launched. On the
other hand, once loaded, the performance of both JVMs is similar: dynamically-
compiled code exhibits performance comparable to optimized C and the indi-
rection overheads due to the virtual machine structure are negligible.

6 Conclusion

This article presented our approach for building dynamically-adaptable execu-
tion environments. The VVM project defines a general framework emphasizing
minimality of the execution environment and system/language reconciliation at
the lowest level. The resulting architecture is composed of an HAL, respon-
sible for physical resources reification, and a reflexive dynamic compiler, used
to dynamically construct dedicated execution environments. The lack of any
predefined resource management, security, or programming models connected
to the reflexivity of the dynamic compiler allows total dynamic flexibility.

18



Within the VVM project we continue to investigate a systematic approach
to building flexible, adaptable, and interoperable execution environments, to
free applications from the artificial limitations on reconfiguration imposed by
conventional programming environments.

References

[1] Atkinson, M., Daynes, L., Jordan, M., Printezis, T., and Spence,
S. An Orthogonally Persistent Java. ACM Sigmod Record 25, 4 (December
1996).

[2] Barnes, J. F., and Pandey, R. CacheL: Language Support for Cus-
tomizable Caching Policies. In the 4th International Web Caching Work-
shop (San Diego, California, USA, April 1999).

[3] Blair, G. S., Costa, F. M., Coulson, G., Duran, H. A., Parla-
vantzas, N., Delpiano, F., Dumant, B., Horn, F., and Stefani,
J.-B. The Design of a Resource-Aware Reflective Middleware Architec-
ture. In Reflection’99 (Saint-Malo, France, July 1999), vol. 1616 of LNCS,
Springer-Verlag, pp. 115–134.

[4] Blanchet, B. Escape Analysis for Java. Theory and Practice. ACM
Transactions on Programming Languages and Systems (2003). To appear.

[5] Boehm, H.-J., Demers, A. J., and Shenker, S. Mostly parallel garbage
collection. Proceedings of the ACM SIGPLAN’91 Conference on Program-
ming Language Design and Implementation (PLDI) 26, 6 (1991), 157–164.

[6] Bollella, G., Gosling, J., Brosgol, B., Gosling, J., Dibble, P.,
Furr, S., and Turnbull, M. The Real-Time Specification for Java. The
Java Series. Addison-Wesley, 2000.

[7] Chen, Z. Java Card Technology for Smart Cards : Architecture and Pro-
grammer’s Guide. The Java Series. Addison-Wesley, 2000.

[8] Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S.,
and Steffens, E. F. M. On-the-fly garbage collection: an exercise in
cooperation. Communications of the ACM 21, 11 (November 1978), 966–
975.

[9] Dumant, B., Horn, F., Tran, F. D., and Stefani, J.-B. Jonathan:
an open distributed processing environment in Java. In Proceedings of
the IFIP International Conference on Distributed Systems Platforms and
Open Distributed Processing (Middleware’98) (Lake District, UK, Septem-
ber 1998).

[10] Fassino, J.-P., and Stefani, J.-B. THINK : un noyau d’infrastructure
répartie adaptable. In the 2nd French Chapter of ACM-SIGOPS : CFSE’2
(Paris, France, Avril 2001).

19



[11] Folliot, B. The Virtual Virtual Machine Project. In the 12th Symposium
on Computer Architecture and High Performance Computing (Sao Paulo,
Brazil, October 2000). (invited talk).

[12] GemStone Systems, Inc. http://www.gemstone.com/.

[13] GNU Classpath. http://www.gnu.org/software/classpath/

classpath.html.

[14] Gong, L. Inside Java 2 Platform Security : architecture, API design and
implementation. The Java Series. Addison-Wesley, June 1999.

[15] Gosling, J., Joy, B., Steele, G. L., and Bracha, G. The Java
Language Specification, 2nd ed. The Java Series. Addison-Wesley, 1996.

[16] Gulwani, S., Tarachandani, A., Gupta, D., Sanghi, D., Barreto,
L. P., Consel, C., and Muller, G. WebCaL: A Domain-Specific Lan-
guage for Web Caching. Computer Communications 4, 2 (February 2001).

[17] Harris, T. L. An Extensible Virtual Machine Architecture. In OOP-
SLA’99 Workshop on Simplicity, Performance and Portability in Virtual
Machine Design (November 1999), p. 135.

[18] Howell, J., Montague, M., and College, D. Hey, You Got Your
Compiler In My Operating System! In 7th IEEE Workshop on Hot Topics
in Operating Systems (HotOS-VII) (Rio Rico, Arizona, USA, March 1999).

[19] ISO International Organization for Standardization. Informa-
tion Technology – Open Distributed Processing – Reference Model, ISO/IEC
10746-(1-4) ed., 1996 — 1998.

[20] Java 2 Platform Micro Edition (J2ME). Connected Limited Device
Configuration (CLDC) Specification, Version 1.0. http://www.java.sun.
com/products/cldc/.

[21] Kon, F., Singhai, A., Campbell, R. H., Carvalho, D., Moore,
R., and Ballesteros, F. J. 2K: A Reflective, Component-Based Op-
erating System for Rapidly Changing Environments. In Proceedings of
the ECOOP’98 Workshop on Reflective Object-Oriented Programming and
Systems (Brussels, Belgium, July 1998).

[22] Lawall, J. L., Muller, G., and Barreto, L. P. Capturing OS ex-
pertise in an Event Type System: the Bossa experience. In ACM SIGOPS
European Workshop 2002 (EW’2002 ) (Saint-Emillion, France, September
2002), pp. 54–61.

[23] Leroy, X. Java bytecode verification: algorithms and formalizations.
Journal of Automated Reasoning (2003). To appear.

[24] Lindholm, T., and Yellin, F. The Java Virtual Machine Specification,
2nd ed. The Java Series. Addison-Wesley, September 1996.

20



[25] Mérillon, F., Réveillère, L., Consel, C., Marlet, R., , and
Muller, G. Devil: An IDL for Hardware Programming. In 4th USENIX
Symposium on Operating System Design & Implementation (OSDI) (San
Diego, California, USA, October 2000).

[26] Michael Golm. Design and implementation of a meta architecture for
Java. Master’s thesis, University of Erlangen, January 1997.

[27] Necula, G. C. Proof–Carrying Code. In the 24th ACM SIGPLAN-
SIGACT symposium on principles of programming Languages (Paris,
France, January 1997).

[28] OMG Object Management Group. The Common Object Request Bro-
ker: Architecture and Specification, 2.3.1 ed., October 1999.

[29] Román, M., Kon, F., and Campbell, R. H. Design and Implementation
of Runtime Reflection in Communication Middleware: the dynamicTAO
Case. In Proceedings International Conference on Distributed Computing
Systems (ICDCS) – Workshop on Electronic Commerce and Web-Based
Applications (Austin, Texas, USA, June 1999), IEEE, pp. 122–127.

[30] Thibault, S., Marant, J., and Muller, G. Adapting Distributed
Applications Using Extensible Networks. In Proceedings of the 19th In-
ternational Conference on Distributed Computing Systems (Austin, Texas,
USA, May 1999), IEEE, pp. 234–243.

[31] Thibault, S., Marlet, R., and Consel, C. A Domain-Specific Lan-
guage for Video Device Drivers: from Design to Implementation. In Con-
ference on Domain Specific Languages (Santa Barbara, California, USA,
october 1997), USENIX Association, pp. 11–26.

21


