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ABSTRACT

The joint LIP6 - INRIA Rocquencourt Virtual Virtual Machine project and the Observatory of Paris-Meudon associated
themselves to propose a reconfigurable space-embedded software platform (PLERS). This is one of the first attempts to
define a systematic and provable way to update software embedded in the very constrained space systems. Our approach
relies on a reconfigurable execution environment on-board the satellite and a software lifecycle that incorporates software
update and maintenance together with software design and development in a common framework. An Architecture Con-
struction Language is defined. It recursively describes a software configuration by expressing the architecture changes to
do on a previous version. Compact low level reconfiguration commands are automatically produced. They are uploaded
and interpreted by the flight software execution environment.

1. INTRODUCTION

Digital systems embedded on-board scientific spacecrafts have historically evolved from simple command sequencers to
real distributed computing systems. One of the reasons for this evolution relies on the use of software: it brings the flexi-
bility needed to implement the desired fault tolerance policy and optimize the instruments sent in space. Indeed software
is specifically programmed to provide the requested functionality. It can also interpret operator-provided commands to
modify its behavior. Another crucial feature is that it can autonomously adapt itself either by checking some state variables
("if-then") or by using more sophisticated artificial intelligence techniques. Finally, provided that programmable memory
is available on-board, software can be modified after the spacecraft has been launched to provide new or improved func-
tionnalities.

In return, this flexibility increases the system complexity. But the more complex the system is, the harder it is to verify
and validate its software and the commands sent to control it. In addition, the more complex the software is, the harder it
is to get adequate knowledge of its exact state during the run. Consequently, space-fields engineers have to make careful
trade-offs between implemented functionality and requested ones in order to mitigate the risks of permanent failure.

Nevertheless, the needs in functionality and flexibility keep on increasing, leading to a strong pressure to make space sys-
tems software-dominant systems. The Remote Agent Experiment [13] is a good example of this tendency to send highly
flexible software-intensive systems in space. In this case the software was controlled through high level goals and was
able to achieve them in most situations through the use of AI-based autonomy. Although very innovative, it was only able
to account for hardware failures. One could think that the possibility of updating the software during the mission would
facilitate this evolution. But software maintenance has its own drawbacks and brings its own risks.

The PLERS project results of a cooperation between the Observatoire de Paris-Meudon, the computer science laboratory
of the University of Paris 6 (LIP6) and the INRIA (National Institute for Research in Computer Science and Automation).
Created during the pre-studies phase of the european satellite Corot, it aims at proposing a reconfigurable space embedded
platform that would allow easier and safer flight software update. Our key idea is to account for software maintenance
from design by proposing an iterative software lifecycle. This study is part of broader work on highly configurable oper-
ating systems, the Virtual Virtual Machine approach [7].



This paper presents the result of a the first 2 years of research on this subject. After presenting the various issues of space-
embedded software update in section 2., we describe section 3. the execution environment which provides the reconfigu-
rability to the flight system. In section 4. we describe our software maintenance process and the related tools. Last, section
5. presents the conclusions and the perspectives of this work.

2. ISSUES OF FLIGHT SOFTWARE UPDATE

Since the Mariner VI spacecraft, modification of flight software during the mission has become a routine. Many reasons
drive those updates. The most obvious one is to correct the spacecraft behavior when a fault occurs because of a software
bug, some command errors, or a hardware failure. In addition, due to high cruise times for planetary probes and the diver-
sity of processing needed during the journey and at the targeted location, on-time upload of needed functionality allows
(i) better use of time for software development, thus implementation of more mature technologies without delaying the
start of the mission, (ii) optimization of memory usage. Besides, as hardware quality and lifetime in space environment
increase, uploading new mission software makes possible the use of a spacecraft for new science experiments without the
burden of very expensive hardware development and launch. Finally, while science instruments embedded on spacecrafts
collect more and more data, the bandwidths available for data transfer to the ground remain constant. More and more pro-
cessing has to be held on-board to extract and format the scientific information. The raw data is thus completely modified
by using theoretical models that have often not been fully validated. This is the case of the european mission Corot. In the
same way JPL's REE [10] project investigates the possibility of embedding super-clustering technologies to increase the
spacecrafts processing capacities. It is extremely important to be able to adapt at runtime those science processings and
the underlying models to achieve the best science results.

Now, some of this software has to participate in critical function such as handling the spacecraft attitude or providing some
kind of autonomous control using a knowledge base. In other cases, as for telecommunication satellites, the spacecraft
can't suffer any interruption of its activities. Stopping the system to modify the software can dramatically reduce its quality
of service. Therefore software update must be low intrusive, that is the unaffected parts of the software must remain active
during the modification process.

Classical patching techniques such as those used for Cassini [2], Soho [16] or Minisat01[8], rely on low level intervention
by the ground segment (e.g. see [11]). They require long design and validation periods for the new portions of code and
for the set of highly detailed commands needed to correctly incorporate them into the flight software. But as software com-
plexity increases, so does the possible modifications. Update in itself become more and more complicated and risky.

We believe that one way to simplify the software maintenance procedure is to have it occur at a higher level, by incorpo-
rating it in an iterative cycle including the design and development phases. Instead of working at the binary code level,
we consider that the software is built as an aggregate of components linked together through some connectors. The com-
ponents interface being fixed and known, they can be developed as independent pieces of relocatable binary code. The
software has then to incorporate an operating system able to load such components, instantiate some connectors and link
them together. Modifications of the application can therefore be expressed as the creation or the removal of such items.
In that way software updates only consist on the description of some reconfiguration operations to switch from an old con-
figuration to a desired one. The binary code implementing each component’s functionality can be uploaded in a database
in the spacecraft memory prior to and independently of the reconfiguration commands.

Many studies have been held to configure distributed applications ([3], [12], [4]). Those solutions all adopt the configu-
ration language approach to describe and install new configurations. Some of them also allow dynamic reconfiguration.
References [17] and [9] propose an execution environment and a related tool suite that supports reconfiguration of robotic
systems. Although their constraints and frameworks significantly differ from ours, these researches greatly inspired us.

3. BUSARD - A MIDDLEWARE DEDICATED TO HANDLE DYNAMIC RECONFIGURATION

More and more spacecrafts use multitask kernels as software executive: the pre-studies for Corot selected Express Logic's
ThreadX as the optimum core for its OS. Most of them offer the same abstractions, i.e. tasks, software timers and com-
munication media (message queues, counting semaphores, binary events). They run some applications built by linking
those items together to form some concurrent processing chains. We define our components as tasks, software timers or
procedures (relocatable block of code having a unique entry point and viewed as a functional unit). The communication
media are our connectors (see [1] for details on this granularity).



Fig. 1. BUSARD and the execution environment

Most of the COTS kernels don't offer the independence between those software items, necessary for efficient and low in-
trusive reconfiguration. Neither do they offer methods to control the application execution (runtime item creation, destruc-
tion, link, task stop, start and synchronization, etc.). To provide a generic solution and bypass those issues, we developed
a middleware, BUSARD (literally Harrier, french acronym for "dedicated software bus handling reconfigurable applica-
tion"). It virtualizes a minimum operating system, at least including the selected multitask kernel and the hardware drivers,
and provides mechanisms to handle the component/connector approach and the dynamic reconfiguration (Fig. 1.). It is
composed of a set of proxies linking the items together and providing the necessary independence. It offers two interfaces
as a set of C-written primitives. The first implements the ports of the components by providing access services to the con-
nectors. The underlying kernel is invoked through this API. The second one offers methods to manage the configuration
and achieve the reconfigurations. In addition the application communicates with the OS and the associated hardware (the
sensors and actuators) through specific, permanent, BUSAR-provided connectors.

The modified chains must be stopped during the reconfiguration. The remaining parts of the software can continue their
execution, provided that the frontier tasks handle the data unavailability. BUSARD trashes all the data in transit in the
reconfigured chains. At the end of the modification the chains have to be resumed at a date defined by the operator for
synchronization with the application.

BUSARD has been ported to ThreadX and shows very good performance: the additional overhead due to the middleware
on the kernel calls is not greater than 10% (60 cycles), and the memory needed for its code is 2.5 kilo-words (30% of the
size of ThreadX). In the same way the amount of data needed by the middleware is negligible.

4. THE SOFTWARE MAINTENANCE PROCESS

Fig. 2. presents the maintenance procedure and the tools used to achieve it. Each single reconfiguration operation corre-
sponds to a composition of some of BUSARD primitive calls. To optimize the communication link, each operation is by-
tecoded to form a command of several binary words reduced to the strictly necessary information. These commands are
decoded and executed by a specific interpreter, incoporated in the on-board Configuration Manager. We identified 58 dif-
ferent commands, composed of at most eight 32-bits words (the format of our CPU), called bytecodes. Each command is
composed of an identifier (the opcode) and several specific parameters. For the interpreter to be able to verify the correct-
ness of the fetched instruction, each of its bytecode possess a type identifier, stored in its 4 uppermost bits, the remaining
28 bits being affected to the associated information.

These commands have to be uploaded and interpreted following a logical sequence. Since a configuration is a composi-
tion of a finite number of components, we describe it using a custom high level textual language, CURL (for Corot Unified
Reconfiguration Language).This description is sufficient to uniquely represent a configuration, install it and incrementally
modify it (i.e. reconfigure). The use of a language allows to verify the coherence of the instruction sequence before emis-
sion. CURL unifies the ADLs (Architecture Description Language) the (R)CLs ((Re)Configuration Language) in that it
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expresses the high level operations to upgrade a starting configuration to a desired one. We name such a language Archi-
tecture Construction Language (ACL). Therefore, a unique language recursively describes a configuration, and provides
the deployment operation and the dynamic software update commands. A script written in CURL starts with a declarative
part, either referencing the initial configuration for a reconfiguration script, or defining the invariant connectors reflecting
the OS access. It also holds the definition of the characteristics of all the needed components. Follows an imperative part.
It presents the succession of instructions to load/remove the components, instantiate/destroy the connectors, link them to-
gether and control the execution of the application.

Fig. 2. Maintenance process

PsyCoPaT (for Corot Parser Tool, a rather long way for an acronym) compiles such a script and produces the sequence of
bytecoded commands to be uploaded to the interpreter. It performs some few low level (syntactical and grammatical) ver-
ifications and produces an object representation of the configuration defined. Such a graph could be used in a structural
verification tool that would ascertain the relevance of the configuration according to some fixed rules. Those rules are of
the type: "all the tasks shall be linked together to form processing chains", "all the processing chains shall be linked to at
least one input and one output persistent communication media", etc.

The Configuration Manager (Fig. 1.) produces a diagnosis of the update operation, first by echoing each BUSARD prim-
itive called and its result, and second by gathering structural information about the installed configuration. This diagnosis
is sent to the ground for further analysis by the operator. In the case something goes wrong during the procedure, the Con-
figuration Manager stops the execution of the received commands and installs a pre-defined configuration to enter a safe
mode. This default configuration is also defined as a series of commands carefully validated and stored in memory. Last,
the Configuration Manager is responsible for the synchronization of the application: it starts the modified chains according
to the temporal pattern provided with the command sequences.

We developed a reconfiguration simulator as a first step to validate CURL. It mocks up BUSARD and the Configuration
Manager by providing the same API and behavior. This simulator uses the configuration graphs produced by psyCoPaT
completed by a description of each component’s temporal behavior. Thus, by injecting stimuli in the system, we can sim-
ulate the temporal behavior of a whole application. Then, at a given time, a sequence of bytecodes is provided to the sim-
ulator and its interpretation merges in the application simulation. This gives some temporal traces of the execution of a
configuration and of a reconfiguration. Such a tool can be used to quickly evaluate whether a given configuration will
respect the system time constraints and if it remains so during the reconfiguration process.
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To validate the whole maintenance process, we developed a fully functional simulator of the embedded system, CHESS,
for Corot Heavenly Embedded Software Simulator (see [15] for a discussion on simulation for space systems). It provides
a mock-up of an embedded minimum operating system using a Windows version of ThreadX. Having the same interface
as the final target’s version, few modifications had to be brought to BUSARD and the Configuration Manager. The system
inputs are simulated by automatically fetching data to the invariant connectors. The whole system communicates with a
mock-up of the ground segment through some UDP links.

Fig. 3. Towards a unified software development and maintenance tool-suite

5. TOWARDS A NEW FLIGHT SOFTWARE LIFECYCLE

In this paper we proposed a new approach for flight software update. It is based on (i) the use of an Architecture Construc-
tion Language (CURL) and the associated tool suite, and (ii) the use of a specific lightweight execution environment on-
board the spacecraft. Unifying ADL and (re)configuration languages, the ACL provides a unique framework to: (i) recur-
sively design an application following the software specifications and, (ii) automatically define the deployment or recon-
figuration operations needed to install each version of the software on a physical target. The lightweight execution
environment embedded on the target provides access to the hardware and all the basic services for dynamic application
construction and update through a generic interface. It also hides whichever mission-specific feature has been defined to
be permanent (un-modifiable). It handles the applications as a set of components linked together through their ports by
some connectors.

Using this approach, software maintenance, or software update, becomes part of the software development lifecycle. The
design team defines the application architecture by describing which modifications need to be held on the existing one.
The starting configuration can be either the empty configuration, an intermediate prototype version, or an obsolete final
image of the software. This description yields to the creation of a set of low level commands that the execution environ-
ment on the target uses to build the desired application. The components are developed independently of any specific con-
figuration, with the only constraint that their code has to be fully relocatable: every internal reference has to be PC-relative
and the external references are limited to OS calls. If their addresses are fixed and known, the references to the OS prim-
itives can be resolved by the tool suite. If not, the component loader (one of the services of the OS) does this job when the
component’s binary is loaded in RAM for execution.

Therefore, the components binary code and the reconfiguration commands automatically produced form the ACL script
can be used to build the application at every stage of the software lifecycle, from early prototype on a simulated environ-
ment, to intermediate prototype on a physical target, to software update during the mission. This software lifecycle thus
become fully iterative with automated deployment. Besides, as proposed by JPL’s Mission Data System [5] [6], such a
process yields to a software development and control architecture integrating the ground and the flight segment.

We advocate that such an approach greatly simplifies not only software maintenance, but also software development. By
designing software to be reconfigurable and hiding the related details in the development process, it also makes software
update safer. We believe that the complexity and the functionality of flight software could greatly increase by applying
those principles. This is especially true for the scientific payloads which could benefit from more sophisticated instru-
ments and experiments by embedding more processings and therefore limiting the impact of reduced up/downlink data
rates.
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As shown Fig. 3., one of the next step of this research would be to merge those concepts in commonly used CASE tools
(e.g. UML-based software development processes) to provide a unified software development and maintenance tool-suite.
Other possible improvements would be to enrich our framework to handle more sophisticated components and distributed
computing, for instance, adding some new connector types to allow true objects interaction and synchronization (e.g. light-
weight ORB-like connectors). Last, it would be necessary to develop more sophisticated validation and verification tools,
together with optimization tools, to fully benefit from the formalism provided by the ACL.
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