
The Virtual Virtual Machine Project*

Bertil Folliot

Laboratoire d'Informatique de Paris 6, University Pierre et Marie Curie/CNRS
4, place Jussieu, 75252 Paris Cedex 05, France

{Bertil.Folliot@lip6.fr}

* This work is partially funded by a french RNRT project (Phenix 99S0361), France Telecom R&D (CTI ISA 001B117) and
the Paris 6 computer science laboratory (PLERS).

Abstract
This paper presents the invited talk at the "Simposio

Brasileiro de Arquitetura de Computadores e Processamento
de Alto Desempenho (SBAC'2000)": the Virtual Virtual
Machine approach for highly configurable operating systems.
This is a joint work with action SOR – INRIA Rocquencourt.
More information about the Virtual Virtual Machine project
can be found at:

http::www-sor.inria.fr/projects/vvm
Keywords adaptable and flexible system, emerging

applications

 . INTRODUCTION

Nowadays systems and architectures are complex,
respond badly to many "emerging" application needs, and
are not easily specialisable to support a given application or
architecture. This leads to a proliferation of non-reusable
"ad-hoc" solutions and place stringent requirements on
developers. Our response to this challenge is a systematic
approach for software configuration based on a multi-
language, hardware independent execution platform, called
the Virtual Virtual Machine (VVM) [FOL 98].

The VVM offers both a programming and an execution
environment allowing: i) to adapt the execution
environment (language + system) to a given domain (for
instance: smart card, mobile phone, personal computer or
satellite), ii) to be extensible by changing on the fly the
execution environment (adding new functionalities,
algorithms, or upgrading the hardware), iii) to promote
interoperability between applications.

Adaptability, extensibility and interoperability offer new
solutions to current emerging applications (embedded
systems, virtual world, active networks, active spaces and
so on). In the following we briefly present the current state
of the VVM project, the Recursive Virtual Machine, the
first results obtained in the domain of active networks, and
the ongoing work for building a reconfigurable execution
environment on board of the french satellite Corot.

 . VIRTUAL VIRTUAL MACHINE

Emerging applications are coming from the wider
acceptance of distributed computing and the ubiquitous use

of "intelligent" devices (mobile telephone, smart card,
embedded systems on so on). This kind of applications is
characterized by dynamic configurations of heterogeneous
interacting parties. This lead to an increasing number and
complexity of system components – for data manipulation
and storage, communication, fault tolerance, mobility,
security and so on. We believe that current standard
solution (as CORBA, Java or DCOM) while looking as
mature technology respond badly to many emerging
application needs and will only introduce more problems
later on. Comparizons with other existing approaches like
flexible operating systems, specializable virtual machine,
meta-object protocol, and language ineroperability are not
described here.

As an attempt to answer to the emerging application
challenge, we propose a systematic approach for software
configuration. It is based on a multi-language, hardware
independent execution platform, called the Virtual Virtual
Machine (VVM). The Virtual Virtual Machine is a
programming and execution environment that is
dynamically extensible and tailored to application needs
[PIU 00]. To help understand the main principles behind
the VVM, let's compare with a classical virtual machine
(like the SUN Java Virtual Machine [LIN 99]). A virtual
machine approach is a step in the right direction and VMs
in general are in increasing use to solve operating system
problems. Thanks to the bytecode representation,
applications are portable and compact, and the instruction
set is dynamically specializable. However the Java VM is
still far too rigid. It corresponds to an application domain
where there is a high amount of available main memory,
limited access to the underlying operating system, and no
quality of service. This is why, new virtual machines have
to be implemented when the application domain does not
correspond to these requirements (for a given architecture,
as a smartcard, or for a given software requirement as fault
tolerance).

Instead of implementing a new virtual machine for each
application domain, the goal of the VVM is to "virtualize"
the virtual machine. New specifications of VM adapted for
an application domain are loaded on demands in the VVM.
These specifications are called VMlets. A VMlet contains

in a high level language the complete description of the
execution environment (bytecodes, syntax, operating
system services, API and so on). The VMlets are
themselves encoded in compact bytecoded programs. They
are not juste declarative, but imperative and may alter their
own execution environment. For instance, according to the
environment where they are loaded they may restrain the
visibility of given functionalities. Thus, the VVM can be
seen as a VM, executing VMlets, that transform the VM to
the one contained in the VMlet (see Figure 1). Bytecoded
applications can then be run on this specialized VM.

NewVMlet

(define-prim())
(define-mem())
…

VVM

other
VMs

NewVM

loader
prims
…

MyAppli

type NewVM

main() {…

execution engine
object - VMlet loader…

 Fig.1 VVM architecture

It is important to notice that after executing the VMlet,
the VVM, becomes the VM described in the VMlet. Thus,
there is a single level of bytecode interpretation. As a result
the performance after loading a VMlet in the VVM should
be quite similar to the corresponding hand-coded VM. The
main advantages are the reduced complexity to program a
VMlet and its associated applications, and the extensibility
of the VVM allowing to change it on the fly, possibly
fundamentally altering its functionality. Moreover the
VVM can support several VMlets thus offering a multi-
functionality VM and promoting interoperability between
applications.

 II. THE RECURSIVE VIRTUAL MACHINE

As a first step to the (long) way to the VVM, we
realized the Recursive Virtual Machine. The RVM is able
to modify its own instruction and primitive sets at runtime.
It's a Lisp like interactive language that has been
implemented on top of UNIX for several architectures
(Pentium, Sparc and PowerPC). By adding or changing
instructions sets on the fly, the RVM allows to reconfigure
itself to a VM adapted to a given application domain. For
now, this application domain should be able to run on top
of Unix (we are working on a RVM version based on the
OSKit [FOR 97], that will allow the RVM to adapt the

operating system itself). Compared to an operating system
the RVM looks like a mono-user, mono-application
environment. The difficult problems of interoperability
between VMlets and the security/verification of the
specifications contained in a VMlets are still open.

Though quite limited, the RVM has been used to
experiment with the programming of VMlets. For this
work, we have considered the application domain of active
networks. To simplify, there are two kinds of packets in an
active network: data and code packets. Code packets are
executed on routers and can manipulate the packets
(change, suppress or add new data packets). Among the
dozens active network protocols we quoted two: PLAN
[HIC 98] and ANTS [WET 98]. In PLAN, each packet
contains both the code and the data. In ANTS, there is an
initialization phase where the code packets are sent to all
the routers. Then, data packets use a code identifier to
indicate which code has to handle the packet. Each of these
two protocols has advantages and disadvantages - not
described here.

To solve with the RVM the active network application
domain, we have to define the appropriate VMlet:
language, operating system services, API. As language, we
didn't consider proposing a dedicated language, and used
the Lisp like internal language of the RVM. As system
services, we reused the socket primitives of the underlying
UNIX operating system (select(), send(), receive()
and so on). As API, we have imitated the API of PLAN
(onremote to send an active packet, getttl to get the
time to live of the packet and so on). Then, by loading this
VMlet, the RVM transforms itself to an active network
router that understands PLAN packet.

The main lesson of this exercise is that the VMlet-
PLAN is two orders of magnitude smaller than the original
implementation (counted as byte of source code). We have
implemented an other VMlets that mimics the API of
ANTS, and we obtain similar result.

We are in the process of making the two VMlets coexist
in order to experiment with interoperability between active
networks and to select the most appropriate protocol for
each packet (i.e. to choose between memory used and
communication bandwidth). The next step will be to build
an "active active network", where traditional "active
networks" contains VMlets packet.

Remember that this work has been done using a limited
prototype. Adding change to the underlying operating
system, or allowing several VMlets to run simultaneously
(next version of the RVM), will allow exploring much more
complex application domains. A target one, that is a
generalization of the active network work, is what we call
"active application". As in active network a packet
contains code to manipulate the data, in active application,
an application contains code to manipulate the application
(both code and data).

 III. RECONFIGURABLE EXECUTION ENVIRONMENT ON

BOARD SATELLITE

A challenging execution environment is a
reconfigurable software environment on board satellite.
This application domain represents an extreme case of
embedded systems, posing severe constraints as, memory
footprint and communications optimizations, real time,
limited processing power, fault tolerance and so on. In
collaboration with the Space Research department of Paris
Observatory we are creating a dedicated version of the
VVM to the french satellite Corot (to be launched in 2005).
The scientific mission running on this satellite is based on
theoretical models that will only be tested during the flight.
Thus, the software on board of the satellite should be
adaptable according to the physical conditions observed
(see [CAI 99] for details on the needed reconfigurations).

Our work is to provide the configuration language
(called Corot Configuration Language, CCL) and the
associated interpreter, allowing the scientific station on the
ground to describe optimized and proved versions of new
configurations to be uploaded on the satellite. This is one
of the first attempt to propose a systematic and provable
way to reconfigure very constrained embedded system.
CCL and its interpreter are very tight to the environmental
conditions of Corot (2 to 4 non interactive communications
by day, 140kbits/day of information in the uplink, limited
memory, CPU utilisation for reconfiguration limited to 10%
and so on). The next step will be to generalize this work
for reconfiguration in severely constrained embedded
systems, making the environmental conditions themselves
adaptable.

 IV. CONCLUSION

The Virtual Virtual Machine project consists to build a
programming and execution environment based on
adaptability, extensibility and interoperability. Its main
goal is to provide a maximum of support for many essential
aspects of the emerging distributed application domains
(embedded systems, virtual world, active networks, active
spaces and so on). The first prototype, the Recursive
Virtual Machine already show the efficiency to write
simple execution environment (called VMlet) for active
networks. We are now working on several application
domains, as "active active networks", "active application"
and reconfiguration in severely constrained embedded
systems. Other applications are being considered as
dynamic aspect-oriented programming and adaptable fault-
tolerance.

ACKNOWLEDGMENTS

The works presented are being done with the VVM
team: Carine Baillarguet, Christian Khoury, Arthur Léger,
Fréderic Ogel, and Ian Piumarta.

REFERENCES

[CAI 99] CAILLAU, Damien; BELLENGER Remy. The Corot
instrument's software: towards intrinsically
reconfigurable real-time embedded processing
software in space-borne instruments. Proceedings of
the 4th IEEE International Symposium on High
Assurance System Engineering, Washington DC,
USA, Nov. 1999.

[HIC 98] HICKS, Michael et al. PLAN: A Packet Language for
Active Networks, Proceedings of the International
Conference on Functional Programming, 1998.

[FOL 98] FOLLIOT, Bertil; PIUMARTA, Ian; RICCARDI
Fabio. A Dynamically Configurable, Multi-language
Execution Platform. Proceedings of the ACM SIGOPS
Workshop, Sintra, Portugal, Sept. 1998.

[FOR 97] FORD, Bryan et al. The Flux OSKit: A Substrate for
Kernel and Language Research. Proceedings of the
16th ACM Symposium on Operating Systems
Principles, Saint-Malo, France, Oct. 1997.

[LIN 99] LINDHOLM, Tim; YELLIN Frank. The Java Virtual
Machine Specification. Addison-Wesley, 1999.

[PIU 00] PIUMARTA, Ian et al. Highly Configurable operating
systems: the VVM approach. Proceedings of the
ECOOP'2000 Workshop on Object Orientation and
Operating Systems, Cannes, France, June 2000.

[WET 98] WETHERALL, David; GUTTAG, John;
TENNENHOUSE David. ANTS: A Toolkit for
Building and Dynamically Deploying Network
Protocols. Proceedings of IEEE OPENARCH'98, San
Fransisco, USA, Apr. 1998.

